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ABSTRACT

The modern power grid is moving towards a cleaner form of energy, renewable energy to meet

the ever-increasing demand and new technologies are being installed in the power network to

monitor and maintain a stable operation. Further, the interactions in the network are not anymore

localized but take place over a system, and the control centers are located remotely, thus involving

control of network components over communication channels. Further, given the rapid integration

of wind energy, it is essential to study the impact of wind variability on the system stability and

frequency regulation. Hence, we model the unreliable and intermittent nature of wind energy

with stochastic uncertainty. Moreover, the phasor measurement unit (PMU) data from the power

network is transmitted to the control center over communication channels, and it is susceptible to

inherent communication channel uncertainties, cyber attacks, and hence, the data at the receiving

end cannot be accurate. In this work, we model these communication channels with stochastic

uncertainties to study the impact of stochastic uncertainty on the stability and wide area control

of power network. The challenging aspect of the stability analysis of stochastic power network is

that the stochastic uncertainty appears multiplicative as well as additive in the system dynamics.

The notion of mean square exponential stability is considered to study the properties of stochastic

power network expressed as a networked control system (NCS) with stochastic uncertainty. We

develop, necessary and sufficient conditions for mean square exponential stability which are shown

in terms of the input-output property of deterministic or nominal system dynamics captured by

the mean square system norm and variance of the channel uncertainty. For a particular case of

single input channel uncertainty, we also prove a fundamental limitation result that arises in the

mean square exponential stabilization of the continuous-time linear system. Overall, the theoretical

contributions in this work generalize the existing results on stability analysis from discrete-time

linear systems to continuous-time linear systems with multiplicative uncertainty. The stability
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results can also be interpreted as a small gain theorem for continuous-time stochastic systems.

Linear Matrix Inequalities (LMI)-based optimization formulation is provided for the computation

of mean square system norm for stability analysis and controller synthesis.

An IEEE 68 bus system is considered, and the fragility of the decentralized load-side primary

frequency controller with uncertain wind is shown. The critical variance value is shown to decrease

with the increase in the cost of the controllable loads and with the rise in penetration of wind

farms. Next, we model the power network with detailed higher order differential equations for

synchronous generator (SG), wind turbine generator (WTG). The network power flow equations

are expressed as algebraic equations. The resultant system is described by a detailed higher order

nonlinear differential-algebraic model. It is shown that the uncertainty in the wind speed appears

multiplicative in the system dynamics. Stochastic stability of such systems is characterized based

on the developed results on mean square exponential stability. In particular, we study the stochastic

small signal stability of the resultant system and characterize the critical variance in wind speeds,

beyond which the grid dynamics becomes mean square unstable.

The power fluctuations in the demand side and intermittent generation (from renewables) cause

frequency excursions from the nominal value. In this context, we consider the controllable loads

which can vary their power to achieve frequency regulation based on the frequency feedback from

the network. Two different load-side frequency controller strategies, decentralized and distributed

frequency controllers are studied in the presence of stochastic wind. Finally, the time-domain

simulations on an IEEE 39 bus system (by replacing some of the traditional SGs with WTG) are

shown using the wind speeds modeled as stochastic as well as actual wind speeds obtained from

the wind farm located near Ames, Iowa. It can be seen that, with an increase in the penetration of

wind generation in the network, the network turns mean square unstable. Furthermore, we capture

the mean square unstable behavior of the power network with increased penetration of renewables

using the statistics of actual wind analytically and complement them through linear and nonlinear

time domain simulations.
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Finally, we analyze the vulnerability of communication channel to stochastic uncertainty on

an IEEE 39 bus system and design a wide area controller that is robust to various sources of

uncertainties that arise in the communication channels. Further, the PMU measurements and wide

area control inputs are rank ordered based on their criticality.
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CHAPTER 1. INTRODUCTION

1.1 Relevance of the Problem and Literature Review

The modern electric power grid is a perfect example of a cyber-physical system (CPS). The

generators, loads, transmission lines constitute the physical part of CPS. The cyber components

consist of a control center, sensors, actuators, and communication links connecting the physical

part to the cyber part of the power network. This CPS paradigm combined with advancement

in sensing and actuation technologies are increasingly viewed as critical components for improving

the reliability and operability of modern power grid. For example, Phasor Measurement Units

(PMUs) are playing a pivotal role in real-time monitoring and feedback control of power system

(refer De La Ree et al. (2010)). The future power grid consists of renewable energy sources to meet

the increasing demands and communication becomes important for the monitoring, control and

stable operation of the power grid as discussed in Wang et al. (2011).

The problem of power system stability with traditional synchronous generation is extensively

studied in Anderson and Fouad (2008); Sauer and Pai (1998a). Given the rapid integration of

variable and intermittent wind energy, one needs to revisit this analysis to investigate the problem

of power system stability. The presence of wind generation in the power system affects the grid

in two crucial ways. First, the dynamics of a doubly-fed induction based wind generator differs

significantly with the dynamics of a synchronous generator (refer Pulgar Painemal (2011)). Second,

the input to the wind turbine generator, wind speeds is a stochastic resource in contrast to the

controllable fuel source near a conventional generator.

Renewable energy sources such as wind and solar are free and abundant resources, but a cost

is paid for their variability. The intermittent and unreliable nature of these renewables has to be

compensated with other energy sources or demand response strategies to maintain power balance

and thereby frequency regulation in the power network. For example, one can have questions like
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how large a variation in wind velocities can be tolerated under normal operating conditions before

it becomes unstable? This question is in contrast with transient stability analysis of the power grid

where we determine if a power system can reach a post-fault stable state after losing a transmission

line or a synchronous generator.

Impact of wind generation on the power system stability has been studied in different directions.

In Slootweg and Kling (2003a), the authors have studied the effect of wind generation on power

system oscillations by observing the movement of eigenvalues when the amount of wind generation

is increased. Similarly, the authors in Gautam et al. (2009) investigate the transient and small

signal stability of the power network with increased wind generation. Further, several probabilistic

(refer Pan et al. (2016); Wang et al. (2016); Xu et al. (2005); Bian et al. (2016); Vicente et al.

(2017); Rueda et al. (2009); Yuan et al. (2015)) and analytical methods (refer Bu et al. (2012))

have been reported in the literature which studies the effect of wind uncertainties on the small

signal stability of the power network. A literature survey on various notions of stochastic stability

of power networks can be found in Jiang et al. (2016).

By modeling the mechanical power input to the wind turbine as random, the authors in Yuan

et al. (2015) have studied the stochastic small signal stability of the power network based on Ito

calculus. In Wang et al. (2016), the authors model the wind speed as stochastic and propose an

analytical method to analyze the probabilistic small signal stability of the power system. Con-

sidering uncertainty in demand as well as generation, Xu et al. (2005) gives a Monte Carlo based

probabilistic small signal stability analysis using eigenvalue analysis. Using extensive Monte Carlo

time-domain simulations, the stochastic transient stability of an islanded power network with ran-

dom wind generation and random load models is studied under the case of contingencies in Vicente

et al. (2017).

One of the important components of the smart grid vision is the active participation of loads

for improved operation and performance of network power system at different time scales as dis-

cussed in staff report (2006). The technology is maturing to the point where the smart grid vision

can be realized for actively controlling the loads to absorb not only the long-term variability or
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uncertainty from renewable power generation but also short-term fluctuations. Moving away from

the traditional way of onsetting the power imbalances in the network, in this work, we use the

cost-effective, fast-acting resource, the controllable loads to compensate the power mismatch and

regulate the frequency. The application of load-side control for frequency regulation falls in the

latter category. With the potential benefits of active load control, there are increased research

efforts towards the development of systematic analytical methods and optimization-based tools for

distributed load control. Most of the literature on this topic primarily focus on stability properties

of control algorithms developed for load-side frequency regulation and can be found in Trudnowski

et al. (2006); Short et al. (2007); Molina-Garcia et al. (2011); Andreasson et al. (2013); Namerikawa

and Kato (2011); Zhao et al. (2015). The availability of controllable loads and recent advancements

in the communication between these devices and the system operator makes it a right choice for

frequency regulation without trading off the end-user quality of service (refer Callaway and Hiskens

(2011); Mathieu et al. (2013); Zhao et al. (2014a); Short et al. (2007); Donnelly et al. (2010); Zhang

et al. (2013); Bashash and Fathy (2013)).

A primary frequency controller that utilizes controllable loads to regulate the frequency in the

network is designed by Zhao et al. (2014b). In particular, Zhao et al. (2014b) proves the asymptotic

stability of the primal-dual gradient system leading to the decentralized algorithm for load-side

frequency control. The relevant literature on the topic of load-side frequency regulation primarily

focus on stability properties of control algorithms developed as seen in Trudnowski et al. (2006);

Short et al. (2007); Molina-Garcia et al. (2011); Andreasson et al. (2013); Namerikawa and Kato

(2011); Zhao et al. (2015). In the absence of uncertain wind, several load-side primary frequency

controller strategies are proposed in the literature. Discussion on the design of a decentralized

load-side primary frequency controller can be found in Zhao et al. (2014a); Molina-Garcia et al.

(2011); Trudnowski et al. (2006); Donnelly et al. (2010), optimal load control with neighborhood

communication in Mallada et al. (2017), distributed control in Fan (2012); Andreasson et al. (2014,

2013); Dörfler et al. (2016), hierarchical distributed control in Lian et al. (2012) and a detailed

survey on existing controllers is given in Shayeghi et al. (2009). Furthermore, it is important to
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notice that the performance of the load-side frequency controller in the presence of stochastic wind

is still an open problem.

The advancement in PMU technology leads to their wide usage for real-time monitoring and

feedback control in the power system. Algorithms for real-time angle and voltage stability moni-

toring of network power system using high-resolution PMU data are proposed in Liu et al. (1994);

Yan et al. (2011); Dasgupta et al. (2013, 2015). One important power system problem from CPS

viewpoint of the power system is the control of inter-area oscillations as discussed in Chakrabortty

and Khargonekar (2013); Singh et al. (2015); Drfler et al. (2014). Damping of inter-area oscillations

requires exchanging PMU measurements over communication channels across wide areas for active

feedback control (refer Terzija et al. (2011)). PMU devices measure the current and voltage phasor

information from the buses at sample rates of up to 60 Hz. PMU data is a time synchronizing

signal as per standards specified in IEEE C37.118 (refer Martin et al. (2014)). The packets of PMU

data are sent through the TCP/IP communication channel to the control center for improved state

estimation, monitoring, protection, and control.

Being aware of the potential benefits of the CPS paradigm, it is essential to analyze the vulnera-

bility of cyber components against possible natural causes, calamities, and also intentional malicious

activities. The reliability of cyber components can be severely limited by communication channel

uncertainty in the form of packet drop, random delay, quantization error, sensors/actuators failure

from natural causes, and most importantly intentional and malicious attack on cyber components.

There are ongoing research efforts to provide guidelines for the quality and reliability of the data

that need to be transmitted over the communication channel for feedback control. The stability of

the power system can be affected in several ways such as through a cyber attack, natural faults,

communication channel uncertainties and many others. Moreover, it is crucial in maintaining the

voltage magnitude and frequency within the prescribed limits for smooth and stable operation of

the power network. These scenarios can be studied with the system-theoretic framework by model-

ing the communication channels and renewable energy sources as stochastic. The results presented

in this report are a step towards this direction.
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In what follows, we discuss the approach we take to study the stability analysis of continuous-

time stochastic power network.

1.2 Power System as a Networked Control System

The problem of stability analysis of continuous-time stochastic power network is studied by tak-

ing the approach of a networked control system (NCS). This NCS is a closed-loop power network

with measurements and control signals traversing through the lengthy communication channels

connecting the cyberspace and physical space. Besides, NCS can be easily modified by adding

sensors, actuators, and controllers to them. Most of the systems with stochastic uncertainty can be

represented in the general form of NCS, and the framework developed in this work can study the

stochastic stability of NCS with uncertainty. In particular, we look at the problem of stochastic

small-signal stability with renewable energy integration where the wind speeds are modeled stochas-

tic, and the wide area control problem in power network with communication channel uncertainty.

The wind speeds to the wind turbine are modeled stochastic, and the stochastic uncertainty

is shown to appear as a multiplicative parametric uncertainty in the system dynamics. Detailed

higher order nonlinear differential-algebraic model is used to model the resultant system. It is

shown that the stochastic uncertainty in the wind speeds appears parametric in the linearized

power system dynamics. This stochastic power network is expressed as a networked control system

with deterministic part of the system as a nominal system and uncertain wind speed in the feedback

to the nominal system.

The problem of damping inter-area oscillations with wide area control of power network in

the presence of communication channel uncertainty is expressed as a linear system with wide area

control inputs and stochastic uncertainty in the measurements/communication. The resultant

system is expressed as a networked control system by considering the mean of the uncertainties in

the nominal system and zero mean uncertainties in the feedback. The measurements and control

signals are in the form of packets of information. In the framework of an NCS, the authors in Singh

et al. (2015) looks at stability analysis and control of inter-area oscillations in a power system where
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the communication channel is modeled with time-delay and data dropouts. The wide area control

of the power network in the presence of delayed communication channels is discussed in Wang et al.

(2012); Chaudhuri et al. (2011); Dotta et al. (2009); Chaudhuri et al. (2004); Naduvathuparambil

et al. (2002). More literature in this area can be found in the references within the above-cited

papers. In contrast with the existing literature, it is important to emphasize that, we study

the stability of continuous-time linear power network where the stochastic uncertainty appears

multiplicative in the dynamics.

In the next section, we provide the literature survey and introduction on the stochastic stability

analysis of continuous-time linear stochastic networked systems.

1.3 Networked Control System with Stochastic Uncertainty

The problem of stability analysis and control synthesis of systems in the presence of uncertainty

has a rich, long history of literature. The literature in this area can be broadly divided into two

parts. Classical robust control literature addresses this problem using norm bounds on uncertainty

as discussed in Dullerud and Paganini (2013); Skogestad and Postlethwaite (2007). In this work,

we study the robust control problem for continuous-time linear dynamics, where the uncertainty

is modeled as a stochastic random variable. The stochastic uncertainty is assumed parametric

and hence enters multiplicatively in the system dynamics. The analysis and control problem with

stochastic multiplicative uncertainty has received renewed attention lately as a model for NCS with

communication uncertainty.

Some of the classical results involving stochastic stability analysis and control problems are

presented in Has’minskĭi (1980). The work by Wonham (1967) is one of the earliest literature on

this topic involving continuous-time dynamics with multiplicative measurement and control noise.

Willems and Blankenship (1971) derive frequency domain-based stability criteria for continuous-

time LTI system with state-dependent noise. Mclane (1971) study the LQR problem for continuous-

time linear systems with state-dependent noise entering only in the state dynamics. Willems and

Willems (1976) study mean square exponential stability analysis and static state feedback control
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design for stochastic systems with state-dependent control noise. Also, Willems and Willems (1983)

developed robust stabilization results for continuous and discrete-time uncertain LTI systems using

state feedback control.

El Bouhtouri and Pritchard (1992, 1993) propose input-output operator approach for charac-

terizing the stability radii and maximizing the stability radii using state feedback. Bernstein (1987)

provides a comparison of necessary and sufficient conditions with dynamic and static output feed-

back controller involving stochastic multiplicative uncertainty, and deterministic norm bounded

uncertainty respectively. Bernstein (1987) also provides a comprehensive survey of literature on

this topic of stochastic stability analysis and control. Ghaoui (1995) gives a linear matrix inequal-

ity (LMI)-based mean square exponential stability result using static state feedback control for

continuous-time LTI systems with state-dependent noise. Using input/output operator approach,

a small-gain theorem for stochastic systems with state-dependent noise only affecting the state

dynamics has been developed in Dragan et al. (1997). In contrast to these references, we develop

mean square exponential stability analysis and synthesis results with stochastic multiplicative un-

certainty, both at the input and output side of the plant (for example, the plant can be a power

network). The problem formulation is general enough to address problems involving not only

input-output channel uncertainty but also parametric stochastic uncertainty.

There is also extensive literature on this topic for systems involving nonlinear dynamics with

multiplicative stochastic uncertainty. For example, authors in Deng et al. (2001); Deng and Kristić

(2000) study the stability analysis and stabilization of nonlinear systems for stochastic uncertainty

of unknown covariance by generalizing the results from Willems and Blankenship (1971); Wonham

(1967) and Ghaoui (1995) to nonlinear dynamics. Lyapunov function-based approach for stabil-

ity analysis and stabilization for a nonlinear stochastic system is proposed in Florchinger (1995).

Generalization of stochastic positive real lemma for stochastic stability analysis and stabilization of

nonlinear system in Lure form are addressed in Diwadkar et al. (2015). The references in the papers

mentioned above further provide more literature review on stochastic system stability analysis.
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Research activities in the area of NCS lead to the renewed interest in the analysis and design

of systems with multiplicative uncertainty (refer L. Schenato and B. Sinopoli and M. Franceschetti

and K. Poolla and S. Sastry (2007)). In particular, network systems with erasure or time-delay

uncertainty in the input or output communication channel can be modeled as a system with mul-

tiplicative uncertainty. Issues related to fundamental limitations for stabilization and estimation

of networked systems, i.e., largest tolerable channel uncertainty are addressed in Elia (2005); L.

Schenato and B. Sinopoli and M. Franceschetti and K. Poolla and S. Sastry (2007); Tatikonda

and Mitter (2004); N.C. Martins, M.A. Dahleh, and N.Elia (2006); N. Elia and J. N. Eisenbeis

(2011); V. Gupta and B. Hassibi and R. M. Murray (2007). Fundamental limitation results are

extended to nonlinear systems in Diwadkar and Vaidya (2013); Vaidya and Elia (2010). Similarly,

the problem of fundamental limitations in linear and nonlinear consensus networks with stochastic

interactions among network components are addressed in Diwadkar and Vaidya (2011); Vaidya and

Elia (2012); Diwadkar et al. (2014); Diwadkar and Vaidya (2016); Elia et al. (2013); Diwadkar and

Vaidya (2014). A small gain theorem for MIMO linear systems with multiplicative noise in the

mean square sense is given in Lu and Skelton (2002). Bamieh (2012) considers the discrete-time

system with correlated stochastic uncertainties and develops necessary, sufficient conditions for

mean square exponential stability expressed in terms of the spectral radius of input-output linear

matrix operator. However, all the above results are developed for discrete-time network dynamical

systems.

The results in this work are inspired from Elia (2005) and can be viewed as a continuous-time

counterpart of the discrete-time results developed in Elia (2005). Following Elia (2005), we provide

a robust control-based framework for the analysis and synthesis of continuous-time linear networked

systems with stochastic channel uncertainties. The developed framework is more general, and we

apply it to study the mean square exponential stability of the power network with stochastic

uncertainty.

The contribution of this work is summarized in the following section.
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1.4 Contributions

In this work, we consider two different problems of interest in the power system community.

First, the problem of stochastic small-signal stability and the performance of a load-side primary

frequency controller in the presence of stochastic wind is considered. Second, the wide area control

problem in the presence of measurement and control input uncertainties. Both these problems

are formulated in the networked control system form, and the stochastic stability analysis for

continuous-time linear networked systems is developed in this work. The challenging part of the

investigation is that the stochastic uncertainty appears multiplicative in the system dynamics (i.e.,

uncertainty multiplies the system states). Necessary and sufficient conditions are developed for

mean square exponential stability which is expressed in terms of the input-output property of de-

terministic or nominal system dynamics captured by the mean square system norm and variance

of channel uncertainty. The stability results can also be interpreted as a small gain theorem for

continuous-time stochastic systems. Linear Matrix Inequalities (LMI)-based optimization formula-

tion is proposed for the computation of the mean square system norm. The LMI-based optimization

formulation is used for the synthesis of a dynamic controller robust to input and output measure-

ment noise. For a particular case of single input channel uncertainty, we propose a fundamental

limitation result that arises in the mean square exponential stabilization of the continuous-time

linear system. Furthermore, fundamental limitation result for mean square exponential stabiliza-

tion expressed in terms of the unstable eigenvalues of the open-loop system is derived. By adopting

density-based deterministic approach involving Fokker-Planck equation (refer Lasota and Mackey

(1994)), we avoid the technical challenges associated with dealing with the stochastic calculus of

stochastic differential equations. Overall, the theoretical contributions in this work generalize the

existing results on stability analysis and controller synthesis from discrete-time linear systems given

in Elia (2005) to continuous-time linear systems with multiplicative uncertainty.

We consider the problem of load-side frequency control in the power network with two different

models. The first one considers a lower order model where the voltages corresponding to the

renewable buses are modeled stochastically. We argue that renewable energy resources in the form
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of wind and solar are the potential source of parametric uncertainty in network power system, where

stochasticity in renewable energy resources will lead to stochastic bus voltages. We extended the

primal-dual gradient system corresponding to the optimal load control problem developed in Zhao

et al. (2014b) to incorporate the stochastic parametric uncertainty which appears multiplicative as

well as additive. Developed mean square exponential stability framework is applied to study the

stochastic stability of the networked power system and the critical variance of parametric stochastic

uncertainty above which the system is mean square unstable is determined. In particular, we show

the fragility of decentralized load-side primary frequency control algorithm proposed in Zhao et al.

(2014b) in the presence of stochastic renewable energy sources. More specifically, we considered the

IEEE 68 bus system and show that the decentralized load-side primary frequency control given in

Zhao et al. (2014b) is extremely fragile to stochastic fluctuations in bus voltages corresponding to

the renewables. Furthermore, we show that with an increase in the cost of the controllable loads,

the value of the critical variance above which the system is unstable decreases. Furthermore, the

critical variance value of Gaussian uncertainty also decreases with the increase in the penetration

of the renewable energy resources in the power network. Finally, we propose a robust load-side

primary frequency control algorithm to overcome the fragility of the decentralized control.

Next, we consider a detailed higher-order model of the power network with differential equations

of synchronous machines, doubly fed induction generators (DFIG) as well as algebraic states at

the generators and network power flow equations are considered. The input to the DFIGs, the

intermittent and unreliable nature of wind speeds is modeled stochastic rather than the bus voltages.

A load-side primary frequency controller is employed to regulate the frequency in the network in

the presence of stochastic wind. The performance of the load-side primary frequency controller in

the stochastic environment is studied on an IEEE 39 bus system. In particular, a discussion is made

on the decentralized and control with neighborhood communication load-side primary frequency

controller strategies with the stochastic wind. Furthermore, we identify the maximum allowable

penetration in the wind generation while maintaining the stochastic small-signal stability using the

actual wind speed data monitored near Ames, Iowa.
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We further study the vulnerability of the power network to uncertainties in sensors and actu-

ators such as PMUs and FACTS devices. The Gaussian uncertainty appears multiplicative in the

power system dynamics which makes the analysis and control design challenging. In this scenario,

the problem of designing a robust wide area control for damping the inter-area oscillations in a

power network (with stochastic uncertainty) is studied. The power network with various sources

of uncertainty is modeled as an NCS with stochastic uncertainty. The developed system theoretic

framework is applied to analyze resiliency and design of robust mitigation strategies against vul-

nerabilities that arise from the cyber component of the power system. The framework allows us

to characterize this loss of performance precisely and identify the critical value of stochastic uncer-

tainty beyond which system losses stability. One of the unique features of our proposed modeling

framework is that the stochastic uncertainties enter both additive and multiplicative in the system

dynamics. The multiplicative nature of stochastic uncertainty allows us to use this framework to

analyze vulnerabilities that appear parametric in the system dynamics such as a change in network

topology or stochasticity in system parameters. Analytical bounds for the maximum tolerable

variance for the noise in the communication channel without losing the stochastic stability of the

network are computed. Our theoretical framework is also used to determine the most critical mea-

surement/control input that can tolerate the least amount of noise variance. We further provide

LMI-based optimization formulation to design a controller robust to communication channel noise.

Simulation results are presented for IEEE 39 bus system whose communication channel is modeled

as a Gaussian channel, and the PMU measurements are rank ordered based on their criticality.

1.5 Organization of this Report

This report is organized in the following way. We have presented the stochastic model of the

power network in Chapter 2. Specifically, this chapter consists of a power network model with

renewables modeled as stochastic and two different load-side primary frequency controller archi-

tectures are discussed. Chapter 3 consists of a power network model with stochastic uncertainty

in the communication channels. In Chapter 4, we provide the theoretical framework on stability



www.manaraa.com

12

analysis and controller synthesis of continuous-time linear stochastic networked systems to tackle

the problems discussed in Chapter 2 and Chapter 3. The application of the developed framework

to study the load-side frequency algorithms with uncertainty in renewables modeled in bus voltages

is given in Chapter 5. In Chapter 6, we discuss the performance of the load-side primary frequency

controller in the presence of stochastic wind and identify the maximum allowable wind generation

in a given IEEE 39 bus system. The problem of wide area control in the presence of communica-

tion channel uncertainties has been addressed in Chapter 7 by applying the developed framework.

Finally, we conclude this report in Chapter 8 by summarizing the results.
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CHAPTER 2. STOCHASTIC UNCERTAINTY MODELING IN POWER

NETWORKS

In this chapter, we show how we can model the power network with stochastic uncertainty and

represent it in NCS form. Because of renewable integration into the grid, the intermittent and

unreliable nature of clouds formation and wind speeds results in an uncertain generation at a solar

farm or a wind farm (see Figure 2.1). In particular, we are interested in stochastic uncertainty

Power	
Network
with	

Transmission	
and	Distribution

PSS

Network	measurements
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Control	
center
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Figure 2.1 Power network with stochastic generation from solar and wind.

arising due to intermittent and unreliable nature of renewables and due to inherent communication

channel uncertainties or because of faulty sensors and actuators. First, we consider the power

network with wind farms and derive the stochastic power network model.

2.1 Modeling of Power Network with Uncertain Wind

Our primary objective is to study how the variability of wind affects the stability of a power

system. To that end, we begin with a differential-algebraic system description of an entire power

system. We adopt the multi-machine power system model from Pulgar Painemal (2011)[Chapter 4]

for the same. Classically, the power network consists of synchronous generators, and we augment
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it with Type-C wind turbines that are doubly-fed induction machines. The choice of Type-C, as

opposed to others, is solely motivated by their popularity in the modern power system as described

in Pulgar Painemal (2011). Our model and notation mirror that in Pulgar Painemal (2011).We

assume at any bus, either a synchronous generator (SG) or a wind turbine generator modeled as a

doubly-fed induction generator (DFIG) is available. A detailed discussion of types of wind turbine

generators, their advantages and setbacks can be found in Pulgar Painemal (2011).

Let nb be the number of buses in the power network with ns synchronous generators and nd

doubly-fed induction generators. We only allow at most one generator to supply power at each bus.

It can either be a synchronous generator (SG) or a doubly-fed induction generator (DFIG). Further,

Vie
jθi denote the (per phase) voltage at bus i. In the following, we describe the description of DA

equations for SGs, DFIGs, and network algebraic equations. The DA model presented here is based

on (Pulgar Painemal, 2011, Chapter 4) and one can refer (Pulgar Painemal, 2011, Chapter 4) for

a detailed description of the model. We append the modeling of frequency dependent controllable

and uncontrollable loads, frequency insensitive loads to the DA system and model the wind speeds

to the DFIG as stochastic. We begin with the description of the dynamic model at SGs.

2.1.1 The Synchronous Generator at Node i

We utilize the so-called two-axis SG model as given in Sauer and Pai (1998b); Pulgar Painemal

(2011). Its DAE description is given below.

ẋSGi =fSGi(xSGi , ySGi),

0 =gSGi(xSGi , ySGi),

where

xSGi =

[
E′qi E′di δi ωi Efdi Rfi VRi Pmi

]>
,

ySGi =

[
Idi Iqi

]>
,

Tmi = Pmi

ωs
ωi
,
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fSGi =



1
T ′
d0i

(−E′qi − (Xdi −X ′di)Idi + Efdi)

1
T ′
q0i

(−Edi + (Xqi −X ′qi)Iqi)

ωi − ωs
ωs
2H (Tmi − EdiIdi − EqiIqi)

1
TEi

(−KEiEfdi + VRi)

1
TFi

(−Rfi +
KFi
TFi

Efdi)

KAi
TAi

(
− VRi
KAi

+Rfi −
KFi
TFi

Efdi + (Vrefi − Vi)
)

1
TGi

(ωs − ωi)



,

gSGi =

−E′qi +X ′diIdi + Vi cos(θi − δi)

Edi +XdiIqi + Vi sin(θi − δi)

 .

We remark that the above model is derived with an IEEE Type-I exciter, and a linear turbine-speed

governor without a droop controller.

2.1.2 The Type-C Wind Turbine Generator at Node i

We adopt a zero-axis model for the DFIG from Pulgar Painemal (2011).1 The DAEs describing

the DFIG at node i is given below.

ẋDFIGi =fDFIGi(xDFIGi , yDFIGi),

0 =gDFIGi(xDFIGi , yDFIGi),

1The dynamics of the flux linkages at the rotor and the stator are assumed to be much faster than the rotor angle
dynamics, and hence, are represented by algebraic, and not, differential equations.
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where

xDFIGi =

[
ωri z1i z2i z3i z4i

]>
,

yDFIGi =

[
Vqri Vdri Iqri Idri Iqsi Idsi Pgeni Qgeni

]>
,

TmDi = B̄ωbCp
v3
Wind

ωri
,

Prefi =


C̄ω3

ri if wri ≤ wmax

Pmax if wri > wmax

,

si =
ωs − ωri
ωs

,

Qrefi = Qset,

fDFIGi =



ωs
2HDi

(TmDi −XmiIqsiIdri +XmiIdsiIqri)

KI1i(Prefi − Pgeni)

KI2i(KP1i(Prefi − Pgeni) + z1i − Iqri)

KI3i(Qrefi −Qgeni)

KI4i(KP3i(Qrefi −Qgeni) + z3i − Idri)


,

gDFIGi =



−Vqri +KP2i(KP1i(Prefi − Pgeni) + z1i − Iqri) + z2i

−Vdri +KP4i(KP3i(Qrefi −Qgeni) + z3i − Idri) + z4i

−Pgeni + ViIqsi − (VqriIqri + VdriIdri)

−Qgeni + ViIdsi

−Vi −RsiIqsi −XsiIdsi +XmiIdri

−RsiIdsi +XsiIqsi −XmiIqri

−Vqri +RriIqri − siXmiIdsi + siXriIdri

−Vdri +RriIdri + siXmiIqsi − siXriIqri



.

We remark that our model includes a rotor speed (real power) controller and a reactive power

(voltage) controller. Next, we describe the network algebraic equations.
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2.1.3 Kirchhoff’s Current Law over the Network

The algebraic equations for the network are described by

0 = gNW (x, y),

where

x =

 xSG

xDFIG

 , y =


ySG

yDFIG

yNW

 .
Here, xSG ∈ R8ns is the concatenation of xSGi ’s over all nodal SGs. Also, ySG ∈ R2ns , xDFIG ∈

R5nd , and yDFIG ∈ R8nd are interpreted similarly. The algebraic states yNW consists of complex

voltages at every bus in the network. Hence, if there are nb buses in the network, then yNW ∈ R2nb .

One can write gNW (x, y) as the collection of gNWi(x, y) for i = 1, . . . , nb, where

gNWi(x, y) =

−<(Īi) +
∑nb

k=1 Vk(Ĝik cos(θk)− B̂ik sin(θk))

−=(Īi) +
∑nb

k=1 Vk(B̂ik cos(θk) + Ĝik sin(θk))

 .

Here, <(z),=(z) denote the real and imaginary parts of any complex number z. And, we have

Ĝ = <(Y ), B̂ = =(Y ),

Y is the admittance matrix of the network and < and = are interpreted entry wise. Each load

bus is modeled with controllable as well as uncontrollable loads (refer Zhao et al. (2014a)). The

uncontrollable frequency insensitive loads are assumed to be as constant power loads denoted by

PUi + jQUi at any load bus i. The controllable load at any load bus i is denoted by PCi . The

frequency in the power network is regulated by using the controllable load power as a design

variable based on the frequency feedback. The discussion on the control design is reserved until

Section 2.4.

At any load bus i, the current is given by

Īi =− (Roi1 V pv
i + PCi)V

−1
i ejθi + jRoi2 V qv−1

i ejθi ,
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where the load power can be expressed as

PLi + jQLi = Roi1 V pv
i + PCi + jR0i

2 V
qv
i .

The choice of pv and qv will determine the type of load connected at bus i. The units of Roi1 and

Roi1 are based on the choice of pv and qv. The uncontrollable load power is given by

PUi + jQUi = Roi1 V pv
i + jRoi2 V qv

i .

2.1.4 Stochastic Wind Speed Modeling

Wind speed variation impacts the wind power output, and in turn, affects the power system

dynamics. Simulations with forecasts of wind speed trajectories cannot capture the effect of that

variation on grid stability, and even if they capture, it will result in misinterpretations due to the

forecasting errors. In this work, our objective is to study the small signal stability (in the presence

of load-side primary frequency controller) wrt the variations in the wind and identify the maximum

allowable wind generation. In so doing, we model the wind speeds as a stochastic process which

captures the variations in the wind speeds. Moreover, with the example of a recorded wind-speed

data, we bring in the relevance of our work and the necessity to study the effect of variations on

wind speeds on the grid stability. Consider the actual wind speeds (as shown in Fig. 2.2) recorded

at a tower near the City of Ames, Iowa recorded in the early spring season on 10th of April 2018

(refer Takle et al. (2018)). The wind speeds are recorded at every 1 second intervals for a period

of 8 hours. Figure 2.3 shows the histogram of the wind speed data for the 8 hours. The red solid

line in Fig. 2.3 corresponds to a Gaussian fit on that data. Therefore, for a short duration of time,

the wind speed can be modeled as a Wiener process.

In this work, we model the (cubed) wind speed as the following stochastic process2.

ϑ3
i =ϑ3

i0 + σiξi (2.1)

2See Pappala et al. (2009); Xu et al. (2005) for wind speed models via Gaussian distribution. Modeling ϑ3
i instead

of ϑi through a Weiner process simplifies our exposition but however explains the instability from stochastic variations
in wind.
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Figure 2.2 Real time wind speed data recorded at a resolution of 1 second from 10 AM

to 6 PM (CDT) on April 10, 2018, observed at a height of 120 m near Ames,

Iowa (refer Takle et al. (2018)).
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Figure 2.3 Gaussian fit on the real-time wind speed data as shown in Fig. 2.2.
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for σi > 0, where ϑi0 represents the nominal wind speed, and ξi =: d∆i
dt denotes the time-derivative

of a standard Wiener process ∆i. The standard independent Wiener processes, ∆(t) satisfy,

(i) Prob{∆(0) = 0} = 1.

(ii) {∆(t)} is a process with independent increments.

(iii) {∆(t)−∆(s)} has a Gaussian distribution with E[∆(t)−∆(s)] = 0 and

E[(∆(t)−∆(s))2] = |t− s|.

Albeit simplistic, the wind speed model in (2.1) is sufficient to illustrate the (small-signal)

stability concerns stemming from the stochasticity in wind speed.

With the wind speed model in (2.1), the mechanical torque to the DFIG at bus i becomes

TmDi = B̄ωbCp
1

ωr
(ϑ3
i0 + σiξi), (2.2)

that further yields

dωri
dt

=
ωs

2HDi

(
B̄ωbCp

1

ωr
(ϑ3
i0 + σiξi)−XmiIqsiIdri +XmiIdsiIqri

)
. (2.3)

The uncertainty in wind speed in (2.3) enters multiplicatively in the system dynamics, i.e., ξi

describes a parametric uncertainty in the vector field fDFIG. In the presence of random wind, the

dynamics of the DFIG at bus i can be expressed as

ẋDFIGi = fDFIGi(xDFIGi , yDFIGi , ξi),

0 = gDFIGi(xDFIGi , yDFIGi).

2.1.5 DAE Model for the Power System

Collecting the DAEs for the SGs, stochastic DAEs of DFIGs, and algebraic equations of the

network, we arrive at the following stochastic DAE that govern the dynamics of the stochastic

power system.

ẋ =f(x, y, ξ),

0 =g(x, y, PC).

(2.4)
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where x ∈ Rn, y ∈ Rnalg , with n := 8ns + 5nd and nalg := 2ns + 8nd + nbus denotes the number of

dynamic and algebraic states respectively. Further,

f =

 fSG

fDFIG

 , g =


gSG

gDFIG

gNW

 .

The stochastic nonlinear representation of the power system described in Eq. (2.4) is linearized

around a nominal operating point (x0, y0) to obtain the following linear system.

ẋ =A(ξ)x+By, (2.5)

0 =Cx+Dy + EPC , (2.6)

where

A =
∂f

∂x
, B =

∂f

∂y
, C =

∂g

∂x
, D =

∂g

∂y
, E =

∂g

∂PC
.

The stochastic linearization of DAEs is followed by applying the results from Imkeller and Lederer

(2002). Basically, the idea there is to transform the stochastic differential equations (SDEs) to

random differential equations (RDEs) using a stationary coordinate change, referred to as Coho-

mology and then locally linearized. This local linearization result is a classic analogue of classical

Hartman-Grobman Theorem (refer Strand (1970); Imkeller and Lederer (2002)). Once again, using

cohomology, the stationary coordinate change, the linear random differential equations are con-

verted to linear stochastic differential equations. The interested readers are referred to Imkeller

and Lederer (2002) for a detailed description of linearization of stochastic differential equations.

This entire process of linearization based on the work of Imkeller and Lederer (2002) is shown in

Fig. 2.4.

Basically, the reason to study the system in the RDE space is due to the properties of solutions

of RDEs. Existence and uniqueness of the solution to RDEs can be proved under a given hypothesis.

An RDE can be interpreted as a non-autonomous ordinary differential equation and unlike SDEs

can be analyzed pathwise with deterministic calculus (refer Han and Kloeden (2017)). The solution
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Nonlinear 
SDE

Nonlinear 
RDE

Linear RDELinear SDE Cohomology

Cohomology

Requires existence of a stationary 
Diffeomorphism

Follows from local 
linearization

SDE – Stochastic Differential Equation
RDE – Random Differential Equation

Figure 2.4 Pictorial representation of the process of linearization of nonlinear SDE which

leads to a linear SDE (refer Imkeller and Lederer (2002))

of SDEs is not differentiable while the solution of RDEs is. SDEs are dealt with using Itô theory or

density function based approach. Further the main result of (Imkeller and Lederer, 2002, Theorem

4.1) is to establish a connection between the cocycle generated by SDEs and RDEs using the

stationary coordinate change, cohomology.

Notice that after the linearization of DAEs, the uncertainty in f appears in the system matrix

A parametrically. In the case where D is invertible, the algebraic states can be expressed in terms

of the dynamic states as y = −D−1Cx − D−1EPC . Then, the differential equation Eq. (2.5) is

given by

ẋ =
(
A(ξ)−BD−1C

)
x−BD−1EPC . (2.7)

The deterministic part and stochastic part of the system Eq. (2.7) can be separated as follows.

ẋ =Ax+

m∑
`=1

σ`B`C`xξ` + EPC , (2.8)

where m are the number of uncertainties in the network. In this case, as the uncertainty is modeled

only in wind speed input to DFIGs, we have m = nd. Further, A is the deterministic part of
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(A(ξ) − BD−1C). Here, B` and C` are column and row vectors, respectively and E = −BD−1E.

Moreover, B` is sparse, with nonzero entries corresponding to the ωr states of the DFIGs. The case

is similar for C`.

The stochastic power network in Eq. (2.8) is shown to be in the form of NCS. We study

this problem using two different approaches. The first involves a lower order model where the

bus voltages corresponding to the renewable buses are modeled stochastically. And the second

approach models the detailed higher-order model of the power network where the input to the

DFIGs, the wind speeds are modeled stochastically. In both the cases, we show the fragility of the

decentralized load-side primary frequency controller. More discussion on these results and other

control strategies will follow in the forthcoming sections.

With the wind speed being modeled as a stochastic process, the resultant dynamics of the Type-

C wind turbine generator is stochastic. Precisely, the mechanical input to DFIG, TmD is stochastic

and hence the state ωr is stochastic. This reflects in Pref , the reference power input to the DFIG is

stochastic. Hence, Pgen, the power generated by the DFIG is stochastic. When the power injected

into the grid is stochastic, the terminal voltages, V are stochastic. In this case, we are interested

in the frequency regulation of the power grid with the help of controllable loads. In doing so, we

modify the power system model with wind uncertainty to incorporate the controllable loads and

also reduce the DAE model to simplify the analysis. Due to the uncertainty in wind availability, we

have seen above that the terminal voltages at the renewable buses are uncertain. Therefore, in the

load-side frequency model, we model the stochastic uncertainty in the voltages. Next, we describe

the optimal load control (OLC) problem in a power network to achieve frequency regulation. First,

we describe the deterministic OLC problem and then model it with stochastic uncertainty in the

voltages which appear multiplicative in the system dynamics.

2.2 Introduction to Optimal Load Control Problem

In this section, we first discuss briefly the deterministic load-side frequency control model as

developed in Zhao et al. (2014b). We refer the readers to Zhao et al. (2014b) for more detailed
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discussion on this model. The basic idea behind the load-side frequency control is to control the

loads, so that, the system-wide frequency can be regulated following a small change in power

injection at one of the system bus. The load control comes at a cost and is measured by the

aggregate disutility of the loads. The objective is to regulate the system frequency while minimizing

the aggregate disutility of the loads.

To set up the problem, consider a power network as a graph network with generator and load

buses as nodes and transmission lines as edges. Let the sets G,L, and E respectively, denote the set

of generator nodes, set of load nodes, and the set containing network edges. The cardinalities of

sets G,L, and E are denoted by ng, nl, and ne respectively. Let N denote the set of generator and

load nodes and its cardinality is given by n, where n = ng + nl. The dynamic network model for

regulating system frequency using load can be written as follows (we refer to Zhao et al. (2014b)

for various assumptions leading to this model).

ω̇j =− 1

Mj
(PLj + PCj − PUj + P outj − P inj ), ∀j ∈ G

0 =PLj + PCj − PUj + P outj − P inj , ∀j ∈ L

ṖFij =Wij(ωi − ωj), ∀(i, j) ∈ E

(2.9)

where ωj is the frequency deviation at jth bus,

Wij := 3
|Vi||Vj |
Xij

cos(θ0
i − θ0

j ), P outj :=
∑
k:j→k

PFjk
, P inj :=

∑
i:i→j

PFij .

The terms, P outj , P inj are the total branch power flows out and into bus j respectively. Further, Vi, θ
0
i

are the voltage and nominal phase angle at bus i, and Xij is the reactance of the line connecting

the buses i and j. Three types of loads are distinguished in the above model namely, frequency-

sensitive, frequency-insensitive but controllable, and uncontrollable loads. The quantity, PLj models

the frequency-sensitive load and is assumed to be of the form PLj = Djωj , i.e., it responds linearly

to frequency deviation. Further, PUj incorporates the part of load which is frequency-insensitive

and uncontrollable and PCj models the load which is frequency-insensitive but controllable. Note

that, in Zhao et al. (2014b), the notations for these various types of loads are denoted by dj , d̂j , P
m
j .

We have changed them here to avoid any conflicts in the notations with previous chapters.
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The DAE model is given in Eq. (2.9) considered for load-side frequency control can be related to

the most general DAE from given in Eq. (2.4) without uncertainty as follows. The PI controllers for

real and reactive power in the DAE model (2.4) are neglected and the quasi-steady-state assumption

made on the network power flow equations is not valid anymore. The quasi-steady-state assumption

on the power flow essentially means that the power flow is not varying much in the transmission lines

and it is modeled by an algebraic equation. But, here in the load-side frequency control model, the

quasi-steady state assumption is not considered and hence, we have a dynamic equation describing

the power flow in the network. Specifically, the network algebraic equations are given in subsection

2.1.3 are actually current balance equations and they are converted to power balance equations by

multiplying with voltage and taking the time-derivative to obtain the dynamic equation for power

flow as shown in Eq. (2.9). The resultant model for load-side frequency control is what has been

described in Zhao et al. (2014b).

The objective is to design a feedback controller PCj (ω(t), PF (t)) for the controllable loads, so

that, frequency can be regulated following disturbance, i.e., the system (2.9) is globally asymp-

totically stable. In Zhao et al. (2014b), an alternate optimization-based approach is proposed for

adjusting the controllable load, PCj . The design of feedback controller, PCj (ω(t), PF (t)), is posed

as an optimal load control (OLC) problem and the feedback controller is derived as a distributed

algorithm to solve the OLC. The optimization problem for OLC is formulated as follows.

min
PC≤PC≤PC ,PL

∑
j∈N

(
cj(PCj ) +

1

2Dj
P 2
Lj

)
(2.10)

subject to
∑
j∈N

(PCj + PLj ) =
∑
j∈N

PUj (2.11)

where cj(PCj ) is the cost on controllable load at bus j, when it is changed by PCj and PLj := D̂jωj

denotes the frequency deviation, ωj of the frequency sensitive load at bus j. The change in either

generator or load power at bus j is denoted by PUj and each load always satisfy −∞ < PC ≤ PC ≤

PC < ∞. Furthermore, the cost function cj at every bus j is assumed to be strictly convex and

twice continuously differentiable on [PC , PC ]. A dual to the OLC problem (2.10)-(2.11) which can
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be solved or implemented with a distributed architecture is written as

max
ν

∑
j∈N

Φj(νj) (2.12)

subject to νi = νj , ∀(i, j) ∈ E , (2.13)

where c
′
j(νj) is the derivative of the cost function

Φj(νj) =cj(PCj (νj))− νjPCj (νj)−
1

2
Djν

2
j + νjPUj ,

dj(νj) =
[
c
′−1
j (νj)

]PCj

PCj

.

Note that Φj is only a function of νj , the dual variable, and all νj are constrained to be equal at

optimality. After some change of variables, it can be shown that the primal-dual gradient system

corresponding to optimization problem (2.12)-(2.13) takes the form as given below (refer Zhao et al.

(2014b)).

ω̇j =− 1

Mj
(PLj + PCj − PUj + P outj − P inj ),∀j ∈ G, (2.14)

0 =PLj + PCj − PUj + P outj − P inj , ∀j ∈ L, (2.15)

ṖFij =Wij(ωi − ωj),∀(i, j) ∈ E , (2.16)

PLj =Djωj , ∀j ∈ N , (2.17)

PCj =
[
c
′−1
j (ωj)

]PCj

PCj

, ∀j ∈ N . (2.18)

Now, we assume that there are no controllable loads located at a generator bus and then rewrite

the above primal-dual gradient system shown in Eqs. (2.14)-(2.18) in compact form.

ω̇G =−M−1
G (DGωG − PUG

+ EGPF ) , (2.19)

0 =DLωL + D̂u− PUL
+ ELPF , (2.20)

ṖF =W (E>GωG + E>LωL), (2.21)

where ωG ∈ Rng , ωL ∈ Rnl , PF ∈ Rne and u is the controllable load input with PC = D̂u.

Observe that MG, DG, DL are diagonal matrices corresponding to the inertia and damping values
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at generators and loads respectively. The weight matrix, W ∈ Rne×ne is defined as a diagonal

matrix with entries Wij for all (i, j) ∈ E . The matrices EG and EL are the incidence matrices

corresponding to generator and load buses respectively.

The control input to be designed is denoted by u. The matrix D̂, is a diagonal matrix and it

contains the information of location of the controllable loads. The entries of D̂ matrix are defined

as shown below.

D̂ii =


1, if there is a controllable load

0, otherwise.

(2.22)

Clearly, we have

ω :=

ωG
ωL

 ∈ Rng+nl , PU :=

PUG

PUL

 ∈ Rng+nl , E :=

EG
EL

 ∈ R(ng+nl)×ne ,

The algebraic equation corresponding to states ωL can be eliminated and the differential algebraic

system describing the optimal load control problem can be defined with purely differential equations.

From, Eq. (2.20), we have

ωL = D−1
L

(
PUL
− D̂u− ELPF

)
. (2.23)

Substituting the algebraic state in Eq. (2.19) and Eq. (2.21), we obtain

ω̇G =−M−1
G (DGωG − PUG

+ EGPF ) , (2.24)

ṖF =W
(
E>GωG + E>LD

−1
L (PUL

− D̂u− ELPF )
)
. (2.25)

In the following section, we motivate the stochastic dynamic network model using uncertain

and intermittent nature of wind energy.

2.2.1 Stochastic Renewables and Parametric Uncertainty

In this subsection, we show how the parametric uncertainty enters in the power system dynamics.

We motivate the parametric uncertainty in the power system dynamics through the presence of

renewables where the intermittent nature of wind energy resource is modeled as a stochastic random
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variable. The network power system with parametric uncertainty and ignoring the controllable loads

can be modeled as a set of differential algebraic equations (DAEs) written as follows:

ẋ = f(x, y, ξ) (2.26)

0 = g(x, y) (2.27)

where, x are the dynamic states corresponding to generator angular velocities, generator excitation

voltages, states of local PI controllers at each generator, power across the transmission lines, etc.,

and y are the network as well as generator algebraic states corresponding to the induced voltages,

currents, bus angles, etc. and ξ denotes the stochastic parametric uncertainty.

The network power system model with renewable wind energy resources will consist of con-

ventional synchronous generators as well as doubly fed induction generators (DFIG). We refer the

readers to Pulgar Painemal (2011) for more detailed discussion on the deterministic modeling of

network power system with renewable wind generation.

Under the assumption that ∂g
∂y 6= 0, implicit function theorem can be applied to network alge-

braic equation (2.27) to eliminate the algebraic state y by expressing the algebraic state y = h(x).

In the presence of stochastic uncertainty in the algebraic equation, an argument involving center

manifold based reduction for stochastic system and singular perturbation theory for stochastic sys-

tem (refer Arnold (2013); Berglund and Gentz (2003)), the algebraic states, y can be expressed as a

stochastic function of states x, i.e., y = h(x, ξ). Using this in Eq. (2.26), more generally we obtain,

ẋ = f(x, h(x, ξ), ξ).

This system is linearized as discussed in Section 2.1.5 at a nominal operating point to obtain a linear

stochastic system, where the stochastic uncertainty enters the linearized system parametrically.

In the following, we show how the stochastic uncertainty in the algebraic states propagates

into the network power system. One of the algebraic states that are of particular interest to us

is the bus voltages. It is clear that uncertainty in renewables will cause the power generated to

fluctuate and henceforth, voltage fluctuates. As the availability of wind energy is uncertain, the

terminal voltages are random. Apart from voltages, there are other network parameters that one
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can assume to be uncertain and hence modeled as a stochastic random variable. For example, the

frequency-sensitive loads can be assumed to be uncertain, i.e., P̂Cj = (Do +D1ξ)ωj , where ξ is the

stochastic uncertainty. Note that, the uncertainty is assumed to be parametric, where the damping

coefficient is changing over time. The loads are constantly turned on and off in the grid and thereby

changing the effective damping coefficient of the frequency-sensitive loads.

Similarly, the frequency-insensitive uncontrollable loads can also be uncertain. However, in

this chapter, we mainly focus on bus voltages being uncertain and analyze the impact of stochastic

voltage fluctuations on the system (mean square exponential) stability. Suppose, n̂g < ng generators

in the power network are now replaced with a renewable energy source. As we are modeling the

voltages at renewable buses to be stochastic, the voltages at buses connecting the renewables are

also stochastic. LetM be the set of a pair of buses whose voltages are stochastic and its cardinality

be denoted by m < ne, where ne is the number of total links in the network. Under the assumption

that the nominal voltages are 1 p.u., stochastic voltage fluctuations are modeled as follows:

|Vi||Vj | = 1 + σ`ξ` ∀(i, j) ∈M (2.28)

where ξ` := d∆`
dt is the Gaussian uncertainty with standard deviation σ` and ∆` is the standard

Wiener process. We use unique index ` to identify and denote the edge pair (i, j) ∈ M and hence

` = 1, . . . ,m.

Furthermore ξ` is assumed to be independent of ξk for ` 6= k. For simplicity of presentation,

we assume all the links in the network whose voltages are modeled with Gaussian uncertainty have

the same variance, σ2.

Remark 1. Notice that instead of assuming individual bus voltages to be random, we assume

product of voltages to be random. This is a modeling assumption and is made to avoid technical

difficulty that arises while multiplying two stochastic processes.
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2.3 Load-side Frequency Control Model with Stochastic Uncertainty in Bus

Voltages

Following the modeling of stochastic voltages as shown in (2.28), we write the stochastic link

weight as follows

Wij = 3
(1 + σξ`)

Xij
cos(θ0

i − θ0
j ).

Define W 0
ij := 3 1

Xij
cos(θ0

i − θ0
j ), and hence, we have

Wij = W 0
ij + σW 0

ijξ`. (2.29)

Substituting Eq. (2.29) in Eq. (2.24) and Eq. (2.25), we obtain the following stochastic power

network model.

ω̇G =−M−1
G (DGωG − PUG

+ EGPF )

ṖF =(W 0 + σW 0 ◦ ξ)
(
E>GωG + E>LD

−1
L (PUL

− ELPF − D̂u)
) (2.30)

where W 0 is a diagonal matrix with entries W 0
ij for all (i, j) ∈ E , ξ is a diagonal matrix with zeros,

ξ1, . . . , ξm−1 and ξm. The nonzero entries of ξ correspond to the links given in setM. The symbol, ◦

denotes the element-wise matrix multiplication. To represent the system (2.30) in standard robust

control form (refer to Figure. 4.1), we rewrite the system equation in slightly different form by

choosing the states as

x̄ :=

ωG
PF

 .
Then, we have

˙̄x =Āx̄+ b+ σ

m∑
`=1

B̄`(C̄`x̄+ H̄`)ξ` + B̄u+ σ

m∑
`=1

H̃`uξ`,
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where,

Ā =

−M−1
G DG −M−1

G EG

W 0E>G −W 0E>LD
−1
L EL

 , b =

 M−1
G PUG

W 0E>LD
−1
L PUL

 ,
B̄` =

 0

e`

 , C̄` =

[
(W 0E>G)` −(W 0E>LD

−1
L EL)`

]
,

H̄` =

[
(W 0E>LD

−1
L PUL

)`

]
, H̃` =

[
−(W 0E>LD

−1
L D̂)`

]
,

B̄ =

 0

−W 0E>LD
−1
L D̂

 ,
with e` ∈ Rm being a vector of all zeros except for 1 in the `th location. Chose x̄∗, such that,

Ax̄∗ + b = 0 and define v = x̄ − x̄∗ to shift the equilibrium of the deterministic system to origin.

Then, we have

v̇ =Āv + σ

m∑
`=1

(B̄`C̄`v + H̃`u)ξ` + σ

m∑
`=1

B̄`(H̄` + C̄`x̄
∗)ξ` + B̄u (2.31)

Due to the singularity of the matrix Ā, we do the transformation on system (2.31) to separate the

null space and range space of Ā. Let Ns(Ā) and Rs(Ā) denotes the set of vectors which span the

null space and range space of Ā. Let nu be the dimension of null space of Ā and n be the dimension

of range space of Ā.

Then, define the transformation matrix, V =

[
Ns(Ā) Rs(Ā)

]
, and using V , we define

r
x

 := V >v.

Pre-multiplying system (2.31) with the transformation matrix V , we obtain0 Arx

0 Axx

 := V >ĀV,

0 (V >B̄`C̄`V )rx

0 (V >B̄`C̄`V )xx

 := V >B̄`C̄`V,

(V >H̃`)r

(V >H̃`)x

 := V >H̃`,

(V >B̄)r

(V >B̄)x

 := V >B̄,
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Defining,

B`
1 := (V >B̄`C̄`V )xx, B`

2 = (V >H̃`)x, A := Axx,

H` := (V >B̄`(C̄`u
∗ + H̄`))xx, B := (V >B̄)x,

we write Eq. (2.31) in the transformed coordinates as follows

ṙ =Arxx+ (V >B̄)ru+ σ

m∑
`=1

(V >B̄`C̄`V )rxxξ` + σ

m∑
`=1

(V >B̄`(H̄` + C̄`x
∗))rxξ`

+ σ

m∑
`=1

(V >H̃`)ruξ` (2.32)

ẋ =Ax+Bu+ σ

m∑
`=1

B`
1xξ` + σ

m∑
`=1

B`
2uξ` + σ

m∑
`=1

H`ξ`, (2.33)

where x ∈ Rn and r ∈ Rnu . We notice that the z dynamics is completely driven by x dynamics,

control input and noise processes whereas, x dynamics is not influenced by z dynamics. Hence,

the necessary condition for the stability of the above system of equations (2.32)-(2.33) is that, x

dynamics be stable. Therefore, we look at the stochastic stability analysis of the system (2.33).

We next study the small-signal stability of the power network modeled with detailed higher

order DAEs and stochastic wind as shown in 2.1.5 and arrive at Eq. (2.8). Load-side primary

frequency control is proposed to minimize the frequency excursions from the nominal due to the

intermittent generation. Two different load-side primary frequency control strategies are discussed.

2.4 Load-Side Primary Frequency Control

The frequency excursions caused by the mismatch between generation and demand can be

subdued by designing a frequency controller. In this work, we have considered the controllable loads

and as the name suggests, they can vary the load power to achieve the power balance in the network

and thus maintains the frequency close to the nominal value. As the controllable loads are providing

the grid services such as frequency regulation in contrast to the governor based control, this type

of control is referred to as load-side primary frequency control. This type of control mechanism

is under debate for several decades and is now emerging as a strong alternative to governor based
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primary frequency control (refer Callaway and Hiskens (2011)). The load-side primary frequency

control benefits from features such as speed of operation, no additional installation cost, availability

of controllable loads (for instance, residential loads such as electric water heaters, air conditioners,

commercial loads such as HVAC systems, etc.) among others and suffers from privacy issues and

additional added communication infrastructure (based on the control architecture). Achieving

optimal load control is beyond the scope of this work and can be referred to Zhao et al. (2014b,

2013).

From Section 2.1.3, we recall that each load is modeled with controllable as well as uncontrollable

loads. The uncontrollable loads are subject to change with respect to time and the variability of

uncontrollable power is also a source of power mismatch in the network. In the ensuing, we discuss

two different control strategies of interest to achieve frequency regulation using controllable loads.

The baseline power at any bus is the load power at that bus without any load modulation. In this

context, we discuss the following decentralized controller.

2.4.1 Decentralized Control

The decentralized load-side primary frequency controller in this work follows closely with the

one discussed in Trudnowski et al. (2006). The real power modulation at every bus i is given by

∆PCi =Ki∆ωi (2.34)

where

∆PCi - Real power modulation at bus i in percent with respect to baseline loading

at bus i

∆ωi - Error in frequency at bus i measured in Hz

Ki - Proportional control gain [percentage/Hz]

The frequency range in which this controller provides frequency regulation depends on the

choice of the proportional control gain. For example, when Ki = 50 and suppose the frequency at

bus i went down by 0.005 Hz. Let the load at bus i be 740 kW. Then, using the formula (2.34), we

can obtain how much percentage of the load has to be cut down to increase the frequency back to
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nominal. By (2.34), we obtain that 2.5% of load has to be modulated, i.e., the new load at bus i will

be 738.15 kW. The numerical values provided in the above example are only for an understanding

purpose. Similarly, the control gains at every bus are defined based on the availability of the

proportion of controllable loads.

One of the advantages of this type of controller is the non-necessity of the additional communi-

cation from individual buses to the centralized control. However, as each the controller at each bus

is acting independently, there will be transients in the system before reaching steady state. Never-

theless, these transients can be attenuated by considering the additional frequency measurements

from the neighborhood buses which results in a control with neighborhood information. A similar

optimal load control with neighborhood communication control can be found in Zhao et al. (2013).

2.4.2 Control with Neighboring Communication

Let Ni be the set of collection of buses neighboring the bus i. Then the real power modulation

based on the control with neighboring communication can be given by

∆PCi =
∑
j∈Ni

Kij∆ωj . (2.35)

The above-discussed control strategies are implemented on an IEEE 39 bus system with wind

generation in Section 6. The motivation behind considering these control strategies is to achieve a

better frequency regulation with the existing resources.

All the notations used in this section are summarized in Appendix 8.2.

Next, we describe the modeling of power network with communication channel uncertainty

which arises in the wide area control of the power network. Wide area control is used to damp

the inter-area oscillations that occur in a power network. For wide area control, measurement

signals are transferred across distance over communication channels measured from the sensors,

phasor measurement units (PMUs). Moreover, the wide area control inputs are also sent over

communication channels to the power network.



www.manaraa.com

35

CHAPTER 3. POWER SYSTEM MODEL WITH COMMUNICATION

CHANNEL UNCERTAINTY

In the modern electric power grid, PMUs are the most important measuring devices, and they

can also be used as a protective relay. Further, FACTS devices are power electronic based static

devices in electric power grid which can enhance controllability and increase power transfer ca-

pability in the network. Due to their functionality, PMUs and FACTS devices play an essential

role in monitoring and maintaining the stability of the power network. All the control and sensing

signals are sent over the communication channels (cyber layer), and these communication channels

are subjected to a natural source of uncertainty. Furthermore, these communication channels will

be an ideal target of cyber attack where the attacker could tamper the data transmitted over them.

We begin with the deterministic power system model which is borrowed from Sauer and Pai

(1998b).

3.1 Power System Dynamic Model

The multi-machine differential algebraic equation (DAE) model for power system dynamics is

given by

1. Differential algebraic equations describing the generator,

2. Algebraic equations describing the network power flow.

We consider ng + nl bus power system model with ng generator buses, nl load buses and assuming

there are ne transmission lines in the network.
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Differential algebraic equations at generator i

dδi
dt

= ωi − ωs,

dωi
dt

=
Tmi

Mi
−
E′qiIqi
Mi

−
(Xqi −X ′di)

Mi
IdiIqi −

Di(ωi − ωs)
Mi

,

dE′qi
dt

= −
E′qi
T ′doi

−
(Xdi −X ′di)

T ′doi
Idi +

Efdi
T ′doi

,

dEfdi
dt

= −Efdi
TAi

+
KAi

TAi

(Vref i − Vi),

0 = Vi sin(δi − θi) +RsiIdi −XqiIqi ,

0 = E′qi − Vi cos(δi − θi)−RsiIqi −X ′diIdi ,

for i = 1, . . . , ng.

The network equations corresponding to the real and reactive power at generator and load buses

are shown below.

Network algebraic equations

IdiVi sin(δi − θi) + IqiVi cos(δi − θi) + PLi(Vi)−
ne∑
k=1

ViVkYik cos(θi − θk − αik) = 0,

IdiVi cos(δi − θi)− IqiVi sin(δi − θi) +QLi(Vi)−
ne∑
k=1

ViVkYik sin(θi − θk − αik) = 0,

for i = 1, . . . , ng,

PLi(Vi)−
ne∑
k=1

ViVkYik cos(θi − θk − αik) = 0,

QLi(Vi)−
ne∑
k=1

ViVkYik sin(θi − θk − αik) = 0,

for i = ng + 1, . . . , ng + nl.

The respective states and parameters in the power network are described in Appendix 8.2.

By linearizing the DAEs at an equilibrium point, we obtain the small-signal model of the power

network. We determine the equilibrium point from the power flow analysis as shown in Sauer

and Pai (1998b); Chakrabortty and Khargonekar (2012). A power system stabilizer (PSS), which

acts as a local controller at the generator is designed based on the small-signal model as shown in
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Chakrabortty and Khargonekar (2012). The input to the PSS controller is ωi(t) and PSS output,

Vref i(t), is fed to the fast acting exciter at the generator. A Type-I PSS given in Jabr et al. (2010) is

considered here which consists of a wash-out filter and two phase-lead filters. The transfer function

of PSS is given by

∆Vref i(s)

∆ωi(s)
= kpss

(1 + sTnum)2

(1 + sTden)2

sTw
1 + sTw

(3.1)

where kpss is the PSS gain, Tw is the time constant of wash-out filter and Tnum, Tden are time

constants of phase-lead filter with Tnum > Tden. Now, define the PSS states at all generators as

xpss = [x>pss1 · · ·x
>
pssng

]>, where xpssi = [∆Vref i ,∆V̇ref i ,∆V̈ref i ]
>. Now, by appending the PSS

dynamics with the generator dynamics and eliminating the algebraic states by kron-reducing the

system, we obtain a reduced order dynamic model as shown below.

∆ẋp = Ā∆xp + E1∆ũ (3.2)

where ∆xp ∈ R7ng and ∆ũ ∈ Rng . For a clear explanation of this model description, we refer the

readers to Chakrabortty and Khargonekar (2012). In this work, we focus on using this model to

study the inter-area oscillations and to design a robust wide-area controller with PMU measure-

ments subject to communication channel uncertainties.

The problem of inter-area oscillations in a power network is well-studied, and one can find

a summary of the work on this topic in Rogers (2012). We try to give a brief idea behind the

cause and consequences of these inter-area oscillations. In the presence of poor damping in the

power network or weak transmission lines, the system tends to group into coherent areas that are

oscillating against each other at low frequencies. Those oscillations in the range of 0.1-1 Hz are

referred to as inter-area oscillations. These oscillations are undesirable as they hinder the goal

to achieve optimal power flow in the power network and in some cases, the oscillations become

unstable leading to blackouts or cascading failures. Although PSS is present at each generator, its

effect is limited to a local area and does not damp inter-area oscillations that are taking place in the

entire power network. Therefore, it is imperative for us to design a controller with measurements

of the whole network. Such a controller is called wide area controller, and it achieves the inter-area
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oscillation damping in the power network by inducing additional damping in the network. This

additional damping is induced in the network by controlling the power electronic devices, referred to

Flexible AC Transmission Systems (FACTS) devices located in the power network. FACTS devices

use the wide area measurements from PMUs and change the real and reactive power injections into

the network. One such FACTS device we model in this work is SVC - Static VAr Compensator. An

SVC is a shunt device and supplies reactive power to the bus to control its voltage. For the detailed

modeling of the FACTS devices in the system dynamics, we refer the reader to Chakrabortty and

Khargonekar (2012); Pushpak and Vaidya (2016).

As the power transfer depends on bus voltage, the addition of a shunt device is modeled into the

swing dynamics. We assume the availability of the shunt device, SVC at each bus. The small-signal

model of the power network with the FACTS devices is given by

∆ẋp = Ap∆xp +Bp∆up

yp = Cp∆xp

(3.3)

where ∆xp ∈ R7ng , ∆up ∈ R3ng and yp ∈ R3ng . For simplicity, we define, n := 7ng, d := 3ng,

m := 2d and we stick to these notations hereafter in this chapter. The output matrix we are

dealing with here is not the power system output matrix, it is in fact the matrix corresponding to

the PMU locations (sensors) in the network. Hence, the entries of the output matrix, Cp depends

on the availability of PMUs.

3.2 Power System with Wide Area Control

The state space system (3.3) describes the reduced power network model with PSS and FACTS

devices. PMUs are placed at different buses in the network to continuously relay the data at that

bus to the control center. The PMU measurements from the power network are transferred to the

control center through a communication channel. Similarly, all the control inputs to the generators,

FACTS devices from the control center are sent through a communication network. While the

generators, loads, and transmission lines constitute the physical part of the power network, the

sensing using PMUs, control center, and communication channel connecting the physical power
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grid to control center constitute the cyber component of the power network. Together, they define

a cyber-physical power system. In Fig. 3.1, we show the cyber-physical split of the power system.

The cyber component of the power system is subjected to various forms of uncertainties. The

source of uncertainties could be natural such as faulty sensors or actuators, packet drops, and

random delay in communication channels. Furthermore, malicious attack or intentional tampering

of data on the cyber component can also be modeled as uncertainty.

Wide	area	control	
(!"#$)

Power	
Network	
with	

Transmission	
and	Distribution

PSS

PSS

Gen-1

Gen-%&

Wide	area	measurements	(from	PMUs)

+

+

+

Local	control	(!'(()

::

Noisy	measurements

Noisy	control	
inputs

∆+Control	
center

∆,

Figure 3.1 Feedback control of power network with stochastic uncertainty

Stochastic uncertainty-based channel uncertainty model provides a unified framework to model

various sources of uncertainty arising from the cyber component of power grid. In the following

discussion, we present stochastic uncertainty-based model for the cyber-physical power system.

We discuss both continuous and discrete-time models for cyber-physical power system specifically

motivated with regard to accommodating two different forms of channel uncertainties. The physical

part of the power system in continuous-time is given in Eq. (3.3) and is denoted by P. After

dropping the ∆ in front of the state variable and control input, we rewrite Eq. (3.3) as

P :


ẋp = Apxp +Bpup

yp = Cpxp

(3.4)

The cyber component consists of controller dynamics and the communication channels connecting

the physical power grid with the controller. The controller dynamics for the cyber component is
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wip
+

ΛI

+

+

ΛO

ΣIξI

ΣOξO

uk = Ckxk

ẋk = Akxk + Bkyk +

yp = Cpxp

ηO

ηI

wop

uk
zip

zop

yk

ypẋp = Apxp + Bpup
up

1

Figure 3.2 Power network interacting with controller over stochastic communication chan-

nels.

denoted by K and is written as follows:

K :


ẋk =Akxk +Bkyk

uk =Ckxk

(3.5)

where xk ∈ Rn are the controller states, yk ∈ Rd, and uk ∈ Rd are the controller input and output

respectively. The physical power grid interacts with the controller over the communication channels

where the output of the physical system, yp interacts with the input of the controller, yk, over the

output communication channels and the output of the controller, uk interacts with the input of the

physical system, up over input communication channels (refer to Fig. 3.2).

Next, we show the modeling of the stochastic channel between the power network and the

control center. To generalize this set-up, we also consider a zero mean additive uncertainty in the

communication channels.

3.3 Communication Channel Modeling with Stochastic Uncertainty

For continuous-time network power system model with wide area control, we assume that the

output of the plant is connected to the input of the controller over a Gaussian uncertain channel

and it is assumed to be affected by multiplicative as well as additive uncertainty. In particular, we
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separate the mean and zero mean (stochastic part) of the multiplicative uncertainty (as shown in

Eq. (4.11)) and is expressed as

yk = (ΛO + ΣOξO) yp +HOηO

where ξO = d∆O
dt and ηO = dζO

dt are the multiplicative and additive stochastic uncertainties in the

output channel respectively. The matrices, ΛO,ΣO denote the mean and standard deviation of the

multiplicative uncertainty and they are defined as

ΛO := diag
(
λ1
O, . . . , λ

d
O

)
, ΣO := diag

(
σ1
O, . . . , σ

d
O

)
.

Further,

HO := diag
(
H1
O, . . . ,H

d
O

)
,

d∆O

dt
:= diag

(
d∆1

O

dt
, . . . ,

d∆d
O

dt

)
,

dζO
dt

:= diag

(
dζ1
O

dt
, . . . ,

dζdO
dt

)
,

where ∆1
O(t), . . . ,∆d

O(t) and ζ1
O(t), . . . , ζdO(t) are independent standard Wiener processes. It is

assumed that the additive uncertainty and multiplicative uncertainty in the output channel are

assumed to be uncorrelated. More specifically, the standard Wiener processes, ∆`
O(t) and ζ`O(t) for

` = 1, . . . , d, are independent.

Similarly, the input of the plant is connected to the output of the controller over a channel with

Gaussian uncertainty as follows,

up = (ΛI + ΣIξI)uk +HIηI ,

where ξI = d∆I
dt and ηI = dζI

dt are the multiplicative and additive uncertainties in the input channel

respectively. The matrices, ΛI , ΣI are the mean and standard deviation of the multiplicative

uncertainty and are defined as

ΛI = diag
(
λ1
I , . . . , λ

d
I

)
, ΣI = diag

(
σ1
I , . . . , σ

d
I

)
.

Further,

HI := diag
(
H1
I , . . . ,H

d
I

)
,
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d∆I

dt
= diag

(
d∆1

I

dt
, . . . ,

d∆d
I

dt

)
,

dζI
dt

:= diag

(
dζ1
I

dt
, . . . ,

dζdI
dt

)
,

where ∆1
I(t), . . . ,∆

d
I(t) and ζ1

I (t), . . . , ζdI (t) are independent standard Wiener processes. It is as-

sumed that the additive uncertainty and multiplicative uncertainty in the input channel are as-

sumed to be uncorrelated, ie., the standard Wiener processes, ∆`
I(t) and ζ`I(t) for ` = 1, . . . , d, are

independent. Moreover, the input and output channel uncertainties are assumed uncorrelated.

3.4 Network Power System in Robust Control Form

The power system dynamical model derived in subsection 3.1, wide area control model from

subsection 3.2, and channel uncertainty model from subsection 3.3 can all be combined to model

the power system with communication channel uncertainty in robust control form with stochastic

uncertainty. Note that standard robust control form consists of the nominal deterministic system

in feedback interconnection with norm-bounded deterministic uncertainty. Stability analysis and

controller synthesis results are well established in Dullerud and Paganini (2013); Skogestad and

Postlethwaite (2007) for this standard framework. The novelty of our framework is that we have

extended the stability analysis and controller synthesis from standard robust control theory with

norm-bounded deterministic uncertainty to stochastic uncertainty in the feedback loop (refer to

Fig.4.1).

The basic idea behind writing the power system in standard robust control form is by separating

the non-zero mean part of the stochastic channel uncertainty and including it in the deterministic

part or the nominal power system dynamics. To achieve this, we introduce two new variables namely

disturbance signal w1 ∈ Rd, w2 ∈ Rd and control variables z1 ∈ Rd and z2 ∈ Rd. Concerning Fig.

3.2, the control and disturbance variables are related as follows:

zop = yp, zip = uk, wop = ΣO
d∆O

dt
zop, wip = ΣI

d∆I

dt
zip.

We re-enumerate the input and output uncertainties,

∆1
I(t), . . . ,∆

d
I(t),∆

1
O(t), . . . ,∆d

O(t)
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as

∆1(t),∆2(t), . . . ,∆m(t),

since m := 2d. Similarly, re-enumerate the processes, ζI(t), ζO(t).

The nominal power system dynamics, denoted by G, now consists of feedback interconnection

of power network and wide area control with nonzero mean part of the stochastic uncertainty in

the feedback channel. We denote it by G := F(P,K). The nominal system has the following state

space form.

G :


ẋ =Ax+Bw

z =Cx

(3.6)

where

x =

xp
xk

 ∈ R2n, z =

zop
zip

 ∈ Rm, w =

wop
wip

 ∈ Rm, C :=

Cp 0

0 Ck

 , B :=

 0 Bp

Bk 0

 ,

A :=

 Ap BpΛICk

BkΛOCp Ak

 .
Similarly, defining

dζ

dt
=

 dζI
dt

dζO
dt

 , d∆

dt
:=

ΣO
d∆O
dt 0

0 ΣI
d∆I
dt

 , H :=

BpHI 0

0 BkHO

 ,
we can write the feedback interconnection of nominal system, G with the multiplicative uncertainty

d∆
dt and additive uncertainty dζ

dt , as F
(
G, d∆

dt

)
.

F
(
G,

d∆

dt

)
:


ẋ =Ax+Bw +H

dζ

dt

z =Cx

w =
d∆

dt
z

(3.7)

In this chapter, we have modeled the power system dynamics with stochastic uncertainty arising

due to
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1. presence of unreliable and intermittent availability of wind energy

2. a cyber attack on the communication channels or inherent communication channel uncertain-

ties

Further, we have shown the stochastic power network model can be written in a networked control

system form. In the next chapter, we develop stability analysis and controller synthesis results that

can be applied to analyze the stochastic stability of the power network. The results we presented

in the next chapter are more general and can be applied to any continuous-time stochastic linear

networked systems.
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CHAPTER 4. STOCHASTIC STABILITY ANALYSIS AND CONTROLLER

SYNTHESIS

In this chapter, we lay the foundation for the analysis of linear continuous-time stochastic net-

worked systems and provide the results for stability analysis and controller synthesis formulation of

such systems. The results developed in this chapter are more general and are applied to study the

stochastic stability of the power network and design controller robust to stochastic uncertainty. We

start this chapter by recalling some of the concepts and definitions related to stochastic differential

equations (SDE) from Lasota and Mackey (1994). In this work, rather than looking at the evo-

lution of individual trajectories, we look at the flow of densities where the initial density function

corresponds to the initial states. This intuitive approach is discussed in Chapter 1 of Lasota and

Mackey (1994).

4.1 Preliminaries and Definitions

This section consists of preliminaries and definitions behind the density function based approach

for the analysis of stochastic differential equations (SDE’s). Consider the following linear SDE with

stochastic multiplicative uncertainty,

ẋ =Ax+
m∑
`=1

σ`B`xξ` (4.1)

where x ∈ Rn, for ` = 1, . . . ,m, ξ` = d∆`
dt with ∆1, . . . ,∆m being the standard independent Wiener

process (Brownian motion) and σ` > 0, for ` = 1, . . . ,m.

Notation 2. In the following, x(t) is used to denote the solution of system (4.1) defined in the

sense of Itô and notation x is used to describe the states. We refer the readers to Lasota and

Mackey (1994)[Theorem 11.5.1] for technical assumptions leading to existence and uniqueness of

solution to SDE (4.1). It is important to emphasize that these assumptions are satisfied by (4.1).
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Next, we state the following stability definition for system (4.1).

Definition 3. [Mean Square Exponentially Stable] System (4.1) is mean square exponentially stable,

if there exists positive constants β1 and β2, such that,

E[x(t)>x(t)] ≤ β1 exp(−β2t)E[x(0)>x(0)], ∀ x(0) ∈ Rn.

We now consider the following SDE with multiplicative as well as additive stochastic uncertainty.

ẋ =Ax+
m∑
`=1

σ`B`xξ` +Hη, (4.2)

where x ∈ Rn, H ∈ Rn, and for ` = 1, . . . ,m, ξ` = d∆`
dt , η = dζ

dt with ∆1, . . . ,∆m, ζ being the

standard independent Wiener process (Brownian motion). It is assumed that the standard Wiener

process, ζ is uncorrelated with the processes, ∆1, . . . ,∆m. We now define the notion of bounded

moment stability for system (4.2).

Definition 4. [Second Moment Bounded] System (4.2) is said to be second moment bounded if

there exists a positive constant β, such that,

lim
t→∞

E[x(t)>x(t)] ≤ β, ∀ x(0) ∈ Rn.

Instead of analyzing the individual trajectories, x(t), we adopt density-based approach as pro-

posed in Lasota and Mackey (1994) towards the analysis of stochastic system (4.2). In particular,

the density function ψ(x, t) for the stochastic process x(t) satisfies

Prob{x(t) ∈ B} =

∫
B
ψ(z, t)dz for any set B ⊂ Rn.

The density function, ψ(x, t) is obtained as a solution of a linear partial differential equation, known

as the Fokker-Planck (FP) equation, also called the Kolmogorov forward equation (refer Lasota and

Mackey (1994)[Theorem 11.6.1]). The FP equation is defined as follows

∂ψ

∂t
=

1

2

n∑
i,j=1

∂2

∂xi∂xj

(
m∑
`=1

σ2
` (b

i
`x)(bj`x) + hihj

)
ψ−

n∑
i=1

∂

∂xi
(aix)ψ, t > 0, x ∈ Rn, (4.3)

where ai, b
i
` are the ith rows of A,B` respectively and hi is the ith entry of H in Eq. (4.2).
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Remark 5. The coefficients,
∑m

`=1 σ
2
` (b

i
`x)(bj`x) + hihj, aix satisfy the uniform parabolicity con-

dition and hence they are regular (refer (Lasota and Mackey, 1994, Definition 11.7.2)). Based on

these properties of coefficients, the solution of FP equation satisfies following bounds (refer Lasota

and Mackey (1994)[Theorem 11.7.1]),

|ψ|,
∣∣∣∣∂ψ∂t

∣∣∣∣ , ∣∣∣∣ ∂ψ∂xi
∣∣∣∣ , ∣∣∣∣ ∂2ψ

∂xi∂xj

∣∣∣∣ ≤ K̄t−(n+2)/2 exp

(
−1

2
δ̄|x|2/t

)
,

where K̄ and δ̄ are positive constants and are function of bounds that appear in the uniform parabol-

icity condition and bounds on the initial density function, ψ(x, 0).

These bounds on ψ and its derivatives allow us to multiply the FP equation (4.3) with any

increasing function that increases more slowly than exp(−1
2 |x|2). The resultant function is decreas-

ing and we can integrate term by term in order to compute moments of ψ(x, t). It is known, for

the case of a linear system driven by additive white noise process, if the initial density function,

ψ(x, 0), is Gaussian, then ψ(x, t) remains Gaussian for all future time t. Hence, for linear systems

with additive white noise forcing, the infinite dimensional FP equation can be replaced with the

finite dimensional equation for the evolution of the mean and covariance. In the following lemma,

we show the covariance evolution for system (4.2) with multiplicative noise is closed and does not

depend upon higher order moments.

Lemma 6. Define the covariance matrix,

Q̄(t) = E[x(t)x(t)>|ψ] :=

∫
Rn

xx>ψ(x, t)dx,

and Q̄(0) := Q̄0 < ∞, then Q̄(t) satisfies the following matrix differential equation (MDE) for

system (4.2).

˙̄Q = Q̄A> +AQ̄+
m∑
`=1

σ2
`B`Q̄B

>
` +HH>. (4.4)

Proof. Consider the quadratic function, V (x) = x>Px, for any P = P> > 0 that is increasing.

Then,

E[V |ψ] :=

∫
Rn

V (x)ψ(x, t)dx.
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Taking the time derivative on both sides and after simplification, we obtain (refer Lasota and

Mackey (1994)[Theorem 11.9.1])

dE[V |ψ]

dt
=

∫
Rn

1

2

n∑
i,j=1

[
m∑
`=1

σ2
` (b

i
`x)(bj`x) + hihj

]
∂2V

∂xi∂xj
+

n∑
i=1

(aix)
∂V

∂xi

ψ(x, t)dx = E[LV |ψ]

(4.5)

where,

LV = x>

(
A>P + PA+

m∑
`=1

σ2
`B
>
` PB`

)
x+H>PH. (4.6)

The time derivative of E[V |ψ] is obtained by doing integration by parts where we make use of

Remark 5. In particular, we make use of the fact that the products, ψV, ∂ψ∂xiV, ψ
∂V
∂xi

vanish ex-

ponentially as |x| → ∞ and hence, the higher order moments become zero. By substituting Eq.

(4.6) in Eq. (4.5), and using the linearity of trace, expectation and commutativity inside trace, we

obtain,

d(tr(E[xx>|ψ]P ))

dt
= tr

((
A>P + PA+

m∑
`=1

σ2
`B
>
` PB`

)
E[xx>|ψ] +HH>P

)
.

By definition of expectation, E[xx>|ψ] = Q̄, we have,

tr( ˙̄QP ) = tr

((
Q̄A> +AQ̄+

m∑
`=1

σ2
`B`Q̄B

>
` +HH>

)
P

)
.

This can be rewritten in terms of an inner product as

〈
˙̄Q− (Q̄A> +AQ̄+

m∑
`=1

σ2
`B`Q̄B

>
` +HH>), P

〉
= 0.

Since, P > 0, we have

˙̄Q = Q̄A> +AQ̄+

m∑
`=1

σ2
`B`Q̄B

>
` +HH>.

Furthermore, for H = 0, we obtain the covariance propagation equation for the system (4.1) without

additive noise.

Lemma 7. The system (4.1) is mean square exponentially stable if and only if system (4.2) is

second moment bounded.
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Proof. Let φ : Rn×n → Rn2
be a bijective operator (refer Costa et al. (2006)[Chapter 2]) which

converts a matrix into a column vector. Then, applying the operator, φ on both sides of MDE’s,

Eq. (4.1) and Eq. (4.2), they can be written as linear vector differential equations.

ϑ̇ =A ϑ, (4.7)

˙̄ϑ =A ϑ̄+ B, (4.8)

where ϑ = φ(Q), ϑ̄ = φ(Q̄), B = (G⊗G)φ(I) ∈ Rn2
and

A =A⊕A+

p∑
k=1

σ2
k(Bk ⊗Bk) ∈ Rn

2×n2
,

where I is the identity matrix of size n×n and ⊗ denotes the Kronecker product, ⊕ is the Kronecker

sum.

Necessity : The mean square exponential stability of system (4.1) yields stability of system (4.7),

that is, A is Hurwitz. Since A is Hurwitz, the steady state value of ϑ̄ is given by

lim
t→∞

ϑ̄(t) = lim
t→∞

φ(Q̄(t)) = −A −1B.

Now, taking the inverse φ operator, we obtain,

lim
t→∞

E[x(t)x(t)>|ψ] = −φ−1(A −1B),

where φ−1(A −1B) is finite. Therefore, system (4.2) is second moment bounded.

Sufficiency: If system (4.2) is second moment stable, then limt→∞ Q̄(t) is a finite value. Then,

we have

lim
t→∞

Q̄(t) = lim
t→∞

φ−1(ϑ(t)) = lim
t→∞

φ−1(eA tϑ(0) + (eA t − I)A −1B),

where I is the identity matrix. The limit on the right-hand side is finite, if and only if A is Hurwitz,

which implies system (4.7) is stable and hence system (4.1) is mean square exponentially stable.

4.2 Stochastic Uncertainty Modeling

In this section, we discuss how the stochastic uncertainty enters into the system dynamics. The

problem set-up (as shown in Figure. 4.1) follows closely with the one used in Elia (2005) for mean
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square exponential stability analysis of a discrete-time network. The dynamics of the plant are

described by

P :

 ẋp = Apxp +Bpup

yp = Cpxp

, (4.9)

where xp ∈ Rn, up ∈ Rd, and yp ∈ Rq are the plant state, input, and output, respectively. Here,

in this work, the plant of interest is the power network. The state space model for the plant is

assumed to be stabilizable, detectable, and strictly proper. Similarly, the controller dynamics are

assumed to be strictly proper with the following state space model.

K :

 ẋk = Akxk +Bkyk

uk = Ckxk

, (4.10)

where xk ∈ Rn, yk ∈ Rq, and uk ∈ Rd. The assumption on the controller dynamics being strictly

proper is essential, since it allows us to study the case where the uncertainties enter at both input

and output channels (for more explanation, please refer to Subsection 4.2.1). If the uncertainty

enters only at the input or the output channel, then one can consider the controller dynamics which

is not strictly proper, such as in Pushpak et al. (2015).

The output of the plant before reaching the controller is affected by stochastic uncertainty and

is given by yk = ΞOyp. Similarly, the input to the plant from controller is affected by stochastic

uncertainty which is up = ΞIuk. The output (ΞO) and input (ΞI) channel uncertainties can be

separated into mean and zero mean part as shown below.

ΞO = ΛO + ΣO
d∆O

dt
, ΞI = ΛI + ΣI

d∆I

dt
, (4.11)

where ΛI(O) are the mean part of the input (output) channel uncertainty, ΣI(O) are the standard de-

viation of the input (output) channel uncertainty, and ∆I(O) denotes the vector valued independent

Wiener processes. The corresponding matrices are defined as

ΛO := diag(λ1
O, . . . , λ

q
O), ΛI := diag(λ1

I , . . . , λ
d
I),

ΣO := diag(σ1
O, . . . , σ

q
O), ΣI := diag(σ1

I , . . . , σ
d
I ),

d∆O

dt
:= diag

(
d∆1

O

dt
, . . . ,

d∆q
O

dt

)
,

d∆I

dt
:= diag

(
d∆1

I

dt
, . . . ,

d∆d
I

dt

)
.
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wip

ΛO

Controller

Plant (P)
yp

zop

ΛIΣI
d∆I
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w1

zm
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System(G)

wm

=⇒ z1
σ1

d∆1

dt

σm
d∆m

dt

ΣO
d∆O

dt

...

1

Figure 4.1 a) MIMO plant and controller with stochastic uncertainty in the input and

output channels b) MIMO nominal system with stochastic uncertainty in the

feedback

Both the input and output channel uncertainties are assumed to be uncorrelated.

Figure 4.1a consists of MIMO plant and controller interacting through uncertain inputs and

outputs. The nominal part of this stochastic closed-loop system (G) is the deterministic part of the

stochastic closed-loop system which consists of MIMO plant (P), controller (K) and the mean part

of the uncertainties (ΛO,ΛI). This nominal part, denoted by G = F(P,K), which is essentially the

feedback interconnection of plant and controller interacting through the mean part of uncertain

channels and is shown inside the dotted line in Figure. 4.1a. Now, the nominal system in Figure.

4.1a, interacts with the stochastic uncertainty via the disturbance (wop ∈ Rq and wip ∈ Rd) and

control signals (zop ∈ Rq and zip ∈ Rd). The disturbance and control signals are

wop = ΣO
d∆O

dt
zop, wip = ΣI

d∆I

dt
zip,

and zop = yp = Cpxp, zip = uk = Ckxk.

The nominal system has the following state space form.

G :

 ẋ = Ax+Bw

z = Cx
, (4.12)
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G z

d∆
dt

w

1

Figure 4.2 Nominal system with stochastic uncertainty

where m = d+ q, x =

xp
xk

 ∈ R2n, z =

zop
zip

 ∈ Rm, w =

wop
wip

 ∈ Rm, C = diag(Cp, Ck),

A =

 Ap BpΛICk

BkΛOCp Ac

 , B =

 0 Bp

Bk 0

 .
Finally, this nominal system, G interacting with stochastic uncertainty, d∆

dt can be written in the

standard robust control form, F(G, d∆
dt ) as shown in Figure. 4.1b, where the stochastic uncertainty,

d∆
dt = diag

(
σ1

d∆1
dt , . . . , σm

d∆m
dt

)
. We show the nominal part of the stochastic closed-loop system

inside the dotted line in Figure. 4.1b and for clarity, the individual uncertain channels are shown in

feedback. Thus, the resultant stochastic closed-loop system (stochastic MIMO system) has number

of feedback connections equal to the number of uncertainties. We now re-enumerate the input and

output uncertainties, ∆1
I , . . . ,∆

d
I , ∆1

O, . . . ,∆
q
O as ∆1,∆2, . . . ,∆m, where m = d+q. The closed-loop

system, F(G, d∆
dt ) has the following state space form and is shown in Fig. 4.2.

ẋ = Ax+Bw

z = Cx

w = d∆
dt z :=

ΣO
d∆O
dt 0

0 ΣI
d∆I
dt

 z
(4.13)

where d∆
dt = diag

(
σ1

d∆1
dt , . . . , σm

d∆m
dt

)
.
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=⇒

+

ΛI

+

+

ΛO

ΣIξI

ΣOξO

+

ηO

ηI

wop

uk
zip

zop

yk

ypup

wip

ypup

ηI

ηO

ykuk
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η

=⇒

w z

η

ξ

G

1

Figure 4.3 Two interconnected systems, plant and controller with multiplicative as well

as additive uncertainty expressed as a nominal system interacting with uncer-

tainty.

Remark 8. Although we arrive at system (4.13) given in standard robust control form with input

and output channel uncertainties, the framework is general enough to model stochastic parametric

uncertainty in system plant, Ap, matrix.

Given any interconnected system with stochastic uncertainty, it can written in the robust control

form as shown in Fig. 4.3.

Before we conclude this section, we show mathematically that choosing a proper controller will

lead to a multiplication of white noise processes which may not be a white noise process.

4.2.1 Stochastic Uncertainty Modeling with Proper Controller

The choice of strictly proper controller is necessary for our formulation to model the stochastic

uncertainty in both input and output channels. In this work, the stochastic uncertainty entering

the input and output channel is assumed to be uncorrelated, and these stochastic uncertainties

(white noise) in the feedback loop will multiply when they traverse around the loop. While the

multiplication of two white noise process is well defined, the resulting process might not be white

noise, and hence the FP equation for the evolution of density cannot be defined.
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In the following, we now show mathematically the choice of a proper controller (but NOT

strictly proper) will lead to the multiplication of the white noise process in the closed-loop system.

Consider the state space of a strictly proper plant:

P :

 ẋp = Apxp +Bpup

yp = Cpxp

,

and the state space of a proper controller:

K :

 ẋk = Akxk +Bkyk

uk = Ckxk +Dkyk

,

and this feedback interconnection of plant and controller are connected through the uncertain

channels as shown in Figure. 4.4.

σO
d∆O

dt

+

+

(K)
yk

up

Controller

Plant (P)
yp

uk

µO

µIσI
d∆I

dt

1

Figure 4.4 Plant and controller with uncertainty in feedback

The input to the controller and the input to the plant are given by:

up =

(
µI + σI

d∆I

dt

)
uk,

yk =

(
µO + σO

d∆O

dt

)
yp,
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where ξO = d∆O
dt , ξI = d∆I

dt with ξO, ξI being the white noise processes and ∆O,∆I are the inde-

pendent standard Wiener processes. Now, the closed-loop system is given by

ẋp =(Ap + µIµOBpDkCp)xp + µIBpCkxk + µIσOBpDkCpxpξO + σIBpCkxkξI

+ σIµOBpDkCpxpξI + σIσOBpDkCpxpξOξI ,

ẋk =Akxk +Bk(µO + σOξO)Cpxp.

Notice that, the white noise processes are multiplying in the above closed-loop system (the

term marked in red color). This multiplication can be avoided when we consider strictly proper

controller or uncertainty in either input or output channels. If the uncertainty is assumed either

at the input side or output side (but not on both sides) of the plant, then we can consider the

controller to be a proper system. Stability analysis and controller synthesis results for the case

with uncertainty either at the input or at the output case without strictly proper assumption on

the controller dynamics have been shown in Pushpak et al. (2015).

In the next section, we derive necessary and sufficient conditions for mean square exponential

stability of system (4.13).

4.3 Mean Square Stability Analysis

We first extend the notion of mean square norm for discrete-time system from Elia (2005) to

continuous-time system. The mean square norm will be used to analyze the mean square stability

of system (4.13) i.e., the feedback interconnection F(G, d∆
dt ). However, the norm itself is defined

for nominal system G with multiple inputs and outputs.

Definition 9. [Mean Square Norm] The mean square norm for nominal system, G, is defined as

follows,

‖ G ‖MS= max
i=1,...,m

√√√√ m∑
j=1

‖ Gij ‖22,

where the system, Gij denotes the transfer function of the nominal system corresponding to the

input j and output i and ‖ Gij ‖2 denotes the standard H2 norm.
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Remark 10. In the definition of mean square norm given above, number of inputs and outputs

to the nominal system depend on number of uncertainties in the input and output channels. For

example, in Figure. 1, there are d inputs, q outputs respectively and hence, there are d + q := m

feedback channels in the stochastic closed-loop system shown in Figure. 4.1b.

The stochastic interconnected system (4.13) can be written as system (4.1) for which, the mean

square exponential stability given in Definition 3 applies. We make the following assumption on

the feedback interconnected system (4.13).

Assumption 11. (a) The deterministic system (4.12) denoted by G is internally stable, that is,

A is Hurwitz and moreover, G is considered to be stabilizable, detectable and strictly proper.

(b) The initial state of the system G, denoted by x(0) has bounded variance and is independent

from ∆i(t) for each i ∈ {1, . . . ,m}.

These assumptions are common in the control literature (for example, refer Elia (2005); Dullerud

and Paganini (2013)). To investigate the stochastic stability of the feedback interconnection

F(G, d∆
dt ), it is necessary condition that the system G is internally stable, i.e., if the system G

is not internally stable, then the feedback interconnection is mean square unstable. Without in-

ternal stability, we cannot analyze the mean square stability of the entire system. In particular,

when the system G is internally stable, one can determine the maximum tolerable variance of the

stochastic uncertainty.

Stabilizability and detectability are again very standard assumptions in the control literature

as shown in Elia (2005); Dullerud and Paganini (2013) and they are in fact weaker assumptions

than controllability and observability. Moreover, the results we provide in this manuscript are

based on H2 norm computation of this deterministic system. The assumption on stabilizability

and detectability is required in the design of controller and for the computation of H2 norm (refer

Dullerud and Paganini (2013)). Furthermore, the assumption on strictly proper nature of plant and

controller is to avoid the product of two white noise processes (which is defined, but the resultant
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process might not be white noise, refer Subsection 4.2.1), when the loop is closed. Finally, the

assumption on initial condition is to avoid the complexity of math due to correlations.

The following theorem provides necessary and sufficient conditions for the mean square expo-

nential stability of the interconnected system (4.13).

Theorem 12. Under Assumption 11, the feedback interconnected system (4.13) shown in Figure.

4.1b is mean square exponentially stable, if and only if, there exists a P > 0, such that, it satisfies

A>P + PA+
m∑
`=1

σ2
`C
>
` B
>
` PB`C` < 0. (4.14)

Proof. Sufficiency: The covariance propagation equation for the feedback interconnected system

with uncertainty is

Q̇(t) =Q(t)A> +AQ(t) +
m∑
`=1

σ2
`B`C`Q(t)C>` B

>
` . (4.15)

This covariance propagation equation is a matrix differential equation and follows from Lemma 6.

To achieve mean square exponential stability, Q(t) should converge to zero exponentially. To show

this, we construct the Lyapunov function V (Q(t)) = tr(Q(t)P ), where P > 0. Then,

V̇ (Q(t)) = tr
(

(Q(t)A> +AQ(t) +
m∑
`=1

σ2
`B`C`Q(t)C>` B

>
` )P

)
.

Then, we obtain, V̇ (Q(t)) = tr(−Q(t)M) for some positive matrix M > 0. Since M > 0, there

exits an α := λmin(M)
λmax(P ) > 0, such that αP ≤ M . Therefore, V̇ (Q(t)) ≤ −αV (Q(t)) and it follows,

system (4.13) is mean square exponentially stable.

Necessity: Let φ : Rn×n → Rn2
be a bijective operator as shown in Costa et al. (2006)[Chapter

2] which converts a matrix into a column vector. Assume, system (4.13) to be mean square ex-

ponentially stable. Then, we know, the covariance matrix, Q(t), converges exponentially to zero.

This implies, we have a stable evolution for ϑ(t) = φ(Q(t)) ∈ Rn2
with the following dynamics,

ϑ̇(t) = A ϑ(t), (4.16)
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where A = A⊕ A +
∑m

`=1 σ
2
` (B`C` ⊗ B`C`). Stability of system (4.16) implies A is Hurwitz and

hence A > is also Hurwitz. Therefore, the evolution, ṙ(t) = A >r(t) is stable and satisfies the

following matrix differential equation,

Ṙ(t) =A>R(t) +R(t)A+

m∑
`=1

σ2
`C
>
` B
>
` R(t)B`C` (4.17)

which is also stable, where R(t) = φ−1(r(t)). Let R(0) > 0, and R(t) denote the solution for

Eq. (4.17). Since R(t) satisfies the stable first order linear differential equation, the function

P (t) =
∫ t

0 R(τ)dτ has a finite value. Integrating on both sides of Eq. (4.17) and simplifying, we

obtain

Ṗ (t)−R(0) =A>P (t) + P (t)A+
m∑
`=1

σ2
`C
>
` B
>
` P (t)B`C`.

Observing that Eq. (4.17) is stable, as t→∞, we obtain,

A>P + PA+
m∑
`=1

σ2
`C
>
` B
>
` PB`C` = −R(0),

where P := limt→∞ P (t). The result now follows by noticing that R(0) > 0.

The ensuing result gives an alternative representation of the inequality given in Eq. (4.14),

which is helpful in writing the LMI-based optimization for computing the mean square norm of

system G. The following lemmas, theorems, and their proofs can be viewed as the continuous-time

counterpart of the discrete-time results from Elia (2005).

Lemma 13. The inequality, Eq. (4.14) holds, if and only if, there exists a Q > 0, and α` > 0 for

every ` = 1, 2, . . . ,m, such that

AQ+QA> +
m∑
`=1

B`α`B
>
` < 0,

α` > σ2
`C`QC>` , ` = 1, 2, . . . ,m.

(4.18)

Proof. The dual inequality equivalent to Eq. (4.14) is

AQ+QA> +

m∑
`=1

σ2
`B`C`QC>` B>` < 0, (4.19)
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where Q > 0. Observe the straight forward substitution leads to a sufficiency condition. In showing

the necessary part, for some matrix M > 0, the inequality (4.19) can be rewritten as

AQ+QA> +
m∑
`=1

σ2
`B`C`QC>` B>` +M = 0. (4.20)

Since we have,
∑m

`=1B`B
>
` ≥ 0, there exists ε(M) := ε > 0, such that

0 ≤ ε
m∑
`=1

B`B
>
` < M.

Using this in Eq. (4.20), we get

AQ+QA> +

m∑
`=1

σ2
`B`C`QC>` B>` + ε

m∑
`=1

B`B
>
` < 0,

⇒AQ+QA> +

m∑
`=1

(
ε+ σ̃2

`C`QC>`
)
B`B

>
` < 0.

Define α` = ε+ σ2
`CiQC>` and we obtain,

AQ+QA> +
m∑
`=1

B`α`B
>
` < 0,

α` > σ2
`C`QC>` for ` = 1, 2, . . . ,m.

In the ensuing result, a LMI-based optimization formulation is provided for the computation of

mean square system norm.

Lemma 14. Suppose A is Hurwitz and let θ > 0 be a diagonal matrix. Then, we obtain,

‖ θ−1Gθ ‖2MS= inf
P>0,S>0,γ

γ

subject to S`` < γ, ` = 1, 2, . . . ,m,A>P + PA PBθ

θB>P −I

 < 0,

θSθ C

C> P

 > 0.
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Proof. For the system, θ−1Gθ, the mean square exponential stability conditions can be equivalently

written as, there exists a Q > 0, such that, it satisfies the following inequalities.

AQ+QA> +
m∑
`=1

B`θ
2
``B
>
` < 0, (27)

γ`θ
2
`` > C`QC>` , ` = 1, 2, . . . ,m, (28)

where θ``’s are the diagonal elements of θ. The column vector, B`’s are the columns of B matrix

and the row vector, C`’s are the rows of C matrix. Now, multiply on both sides of inequality (27)

by Q−1 := P, and writing it in compact form, we obtain

A>P + PA+ PBθθ>B>P> < 0. (29)

Further, the element wise inequalities shown in Eq. (28) can be written in compact form as a linear

matrix inequality as shown below.

θSθ > CP−1C>,

S`` < γ`, ` = 1, 2, . . . ,m.

(30)

Now rewriting Eqs. (29), (30) using Schur compliments, the computation for H2 norm problem

can be written as an LMI optimization problem as shown below.

‖ θ−1Gθ ‖22= inf
γ`,S>0,P>0

∑
`

γ`

subject toA>P + PA PBθ

θB>P −I

 < 0,

θSθ C

C> P

 > 0,

S`` < γ`, ` = 1, 2, . . . ,m.

Now, the cost is modified to obtain the result by observing the difference between ‖ G ‖2MS=

max`=1:m S`` and ‖ G ‖22=
∑m

`=1 S``.
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The computation of H2 norm problem as an LMI optimization problem is not new and has

been discussed in Dullerud and Paganini (2013), Scherer et al. (1997). A similar result for the

discrete-time case has been discussed in Elia (2005).

The following theorem is the main result in this section and provides equivalent necessary,

sufficient conditions for mean square exponential stability of feedback interconnected system (4.13).

In fact, the results of the following theorem can be viewed as a stochastic counterpart of the small

gain theorem for the continuous-time system. We apply this result to study the stochastic power

network as discussed in Chapter 2.

Theorem 15. Under Assumption 11, consider the feedback interconnected system (4.13) as shown

in Figure. 4.1b. Then, the following stability conditions for mean square exponential stability are

equivalent.

(a) The feedback interconnection of nominal system G with stochastic uncertainty, d∆
dt is mean

square exponentially stable.

(b) There exists a Q > 0 and α` > 0, for every ` = 1, . . . ,m, satisfying the LMI given in Eq.

(4.18).

(c) ρ(G̃Σ̃) < 1,

where ρ stands for the spectral radius of a matrix and Σ̃ = diag(σ2
1, · · · , σ2

m),

G̃ =


‖ G11 ‖22 . . . ‖ G1m ‖22

...
. . .

...

‖ Gm1 ‖22 . . . ‖ Gmm ‖22

 .

Further, for σ2
1 = · · · = σ2

m = σ2, the feedback interconnection is mean square exponentially stable

if and only if

σ2 inf
θ>0,θ−diag

‖ θ−1Gθ ‖2MS< 1.
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Proof. (a)⇔ (b) This follows by combining the results from Theorem 12 and Lemma 13.

(b) ⇔ (c) This result follows by distributing the system to single input single output systems and

using the spectral radius definition of nonnegative matrices discussed in Horn and Johnson (2012).

In the special case of all variances to be the same, the result follows from Lemma 14 and by

choosing

θ = diag(
√
α1,
√
α2, . . . ,

√
αm).

Here, the mean square norm is computed for the transformed system θ−1Gθ. The scaling factor,

θ, ensures the mean square norm with respect to all inputs and outputs is the same. Hence, for

a SISO system, the scaling factor, θ, does not come into play. Moreover, in the case for a SISO

system, the mean square norm is equal to the standard H2 norm.

Remark 16. The equivalent condition (c) from Theorem 15 can be used to determine the maximum

tolerable variance of uncertainty, σ∗ above which the feedback interconnection will be mean square

exponentially unstable. In particular, the critical σ∗ is given by

σ∗ =
1√

infθ>0,θ−diag ‖ θ−1Gθ ‖2MS

.

The results derived until here provide a framework for determining the largest variance of

channel uncertainty. However, the variance value itself must be computed numerically. We do not

have the analytic expression for the largest variance value expressed in terms of characteristics of

the open-loop system dynamics. Later, in the simulation section, we show the variance value is a

function of both the open-loop unstable poles and zeros. Therefore, in the next section, for a special

class of systems, single input system with full state feedback, we show analytically, the maximum

variance that can be tolerated by the nominal system with state feedback controller.

In the following, we summarize how the stochastic system with multiplicative uncertainty is

written in a form that is standard in robust control theory.
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(a) The original system consists of feedback interconnection of plant dynamics, denoted by P,

with the controller, K, where the plant is connected to the controller through input and output

channel with uncertainty. The uncertainty in the input and output channels are written as

mean plus stochastic (i.e., zero mean) part. In particular, the input and output channel

uncertainty, ΞI and ΞO respectively are written as

ΞI = ΛI + ΣI
d∆I

dt
, ΞO = ΛO + ΣO

d∆O

dt
,

where ΛI(O) are the mean part of the input (output) channel uncertainty, ΣI(O) are the

variance of the input (output) channel uncertainty, and ∆I(O) denotes the vector-valued

independent Wiener processes. The resultant system is a stochastic system with multiplicative

uncertainty.

(b) Next, we combine the plant dynamics, the controller dynamics, and the mean part of the

channel uncertainties (as shown inside the dotted box in Figure. 4.1a to construct the mean

or nominal closed-loop system denoted by G := F(P,K)).

(c) Finally, the nominal closed-loop system G interacts with the zero mean input and output

channel uncertainty through the disturbance signal, w, and control signal, z. We stack all the

input and output channel uncertainties as ∆1, . . . ,∆m where m = p+q (i.e., sum of input and

output channel uncertainties) to close the uncertainty loop over the nominal dynamics G as

shown in Figure. 4.1b. This closed-loop system is denoted by F(G, d∆
dt ). Now, we can analyze

the mean square exponential stability of this closed-loop system by applying Theorem 15.

4.3.1 Fundamental Limitations in a Single Input Case

In this section, we discuss the fundamental limitations in the mean square stabilization for a

special case, single input system with full state feedback. The channel uncertainty is assumed

at input side only. With single uncertainty in the feedback loop, the mean square system norm

is reduced to standard H2 norm. Furthermore, using one of the standard results from robust

control theory given in Rotea (1993), we know using the full state feedback measurements, the
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Figure 4.5 Single input system with full state feedback and uncertainty in the input chan-

nel

optimal H2 performance obtained from static and dynamic controllers are the same. Hence, to

find the controller giving optimal H2 norm, it is enough to restrict the search to the class of static

controllers. With some abuse of notation, we write the single-input LTI system (as shown in Figure.

4.5) with input channel uncertainty as follows.

ẋ = Aox+Bû, û = (µ+ σξ)v

v = Kx,
(4.21)

where û ∈ R, µ 6= 0 and σ are the mean and standard deviation of the white noise process, ξ = d∆
dt ,

with ∆ being the standard Wiener process. System matrix, Ao correspond to the open-loop system.

We now make the following assumption.

Assumption 17. Assume all the eigenvalues of Ao are in the right-half plane, i.e., −Ao is Hurwitz

and the pair (Ao, B) is stabilizable.

Since, Ao has all eigenvalues on the right hand side, the stabilizability of pair (Ao, B) is equiv-

alent to controllability of (Ao, B). Further, the pair (Ao, µB) is also controllable and there exists a

stabilizing controller K such that A := Ao+µBK is Hurwitz. The objective here is to design a state

feedback controller, so the closed-loop system is mean square exponentially stable with maximum

tolerable variance, σ2
∗.
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Theorem 18. Consider the stabilization problem for single-input full state feedback LTI system with

channel uncertainty at the input side (refer Figure. 4.5) shown in Eq. (4.21). Under Assumption

17, system (4.21) is mean square exponentially stable, if and only if,

2
σ2

µ2

∑
i

λi(Ao) < 1.

Proof. The system (4.21) with plant, state-feedback controller and uncertain input channel are

written in closed-loop form as

ẋ =Ax+ σBKxξ. (4.22)

This closed-loop system (4.22) can be further written as a SISO system with nominal system G

and stochastic uncertainty, ξ in the feedback. The system matrices of the nominal system, G areAo + µBK B

K 0

 .

This follows by noticing that the disturbance (w) and control (z) signals are given by w = ξz and

z = Kx respectively. We recall that the mean square norm for the SISO system (4.22) is equivalent

to H2 norm of the system (4.22). Based on this, we first show the necessity part.

Necessity: From Theorem 15, we know that the necessary condition for mean square exponential

stability is, σ2 ‖ G ‖22< 1. The H2 norm of G, i.e., ‖ G ‖2, is given by B>PB where P > 0, and is

obtained from

(Ao + µBK)>P + P (Ao + µBK) +K>K = 0. (4.23)

Now, the optimal K satisfying Eq. (4.23) is obtained by minimizing the left hand side (lhs) of

Eq. (4.23), i.e., by taking the derivative of lhs of Eq. (4.23) w.r.t K and equating it to zero which

yields, K = −µB>P . Using this optimal K in Eq. (4.23), we obtain,

A>o P + PAo − µ2PBB>P = 0.
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Further, we rewrite this equation by multiplying and dividing the last term with σ2B>PB to obtain

A>o P + PAo −
µ2

σ2

PBB>P

B>PB
σ2B>PB = 0. (4.24)

Now, using the given relation, σ2B>PB < 1 from mean square exponential stability, we can rewrite

Eq. (4.24) as

A>o P + PAo −
µ2

σ2

PBB>P

B>PB
< 0. (4.25)

Since, P > 0, pre and post multiplying Eq. (4.25) by P−
1
2 on both sides, we obtain,

P−
1
2A>o P

1
2 + P

1
2AoP

− 1
2 − µ2

σ2

P
1
2BB>P

1
2

B>PB
< 0. (4.26)

Now, taking trace on both sides of Eq. (4.26) and using the properties of trace, we have, 2tr(Ao) <

µ2

σ2 .

Sufficiency: It is enough to show, σ2B>PB < 1, where P > 0 satisfies Eq. (4.23). Consider

Eq. (4.23) and choose K = −µB>P to rewrite Eq. (4.23) as

A>o P + PAo − µ2PBB
>P

B>PB
B>PB = 0. (4.27)

Pre and post multiplying Eq. (4.27) by P−
1
2 on both sides and then taking trace on both sides, we

obtain,

2tr(Ao)− µ2tr(B>PB) = 0. (4.28)

Given, 2σ
2

µ2
tr(Ao) < 1. Then, Eq. (4.28) simplifies to µ2B>PB < µ2

σ2 and hence the result follows.

In the next section, we discuss the controller synthesis formulation when all the uncertainties

in the input and output channels are considered to be same, i.e., σ2
1 = · · · = σ2

m = σ2.

4.4 Mean Square Controller Synthesis

In this section, we tackle the controller synthesis problem for the closed-loop system, F(G, d∆
dt ).

The controller is designed such that the closed-loop system can tolerate maximum uncertainty.
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Using part (c) of Theorem 15 and Lemma 14, we pose the controller synthesis problem as an

LMI-based optimization problem,

inf
K−stab,LTI

inf
θ>0,diag

‖ θ−1F(P,K)θ ‖2MS .

Moreover, the designed K satisfies Assumption 11a which is, the nominal system G = F(P,K) is

internally stable.

This optimization provides a robust optimal controller by searching in the space of linear time-

invariant stabilizing controllers that minimizes the mean square norm. However, searching for a

robust optimal controller is a nonconvex problem. This problem can be made convex by following

the approach given in Scherer et al. (1997) along with fixing the variable θ. Later, in simulations, we

solve the optimization problem for the controller by keeping the variable θ constant. The resultant

controller formulation is given in the ensuing theorem.

Theorem 19. Given a plant P and for any θ > 0, the optimization problem:

inf
K−stab,LTI

‖ θ−1Gθ ‖2MS

is equivalent to the following LMI optimization:

inf
X,Y,S,Â,B̂,Ĉ,γ

γ

subject to S`` < γ, ` = 1, 2, . . . ,m,

L1(X, Ĉ)

Â +A>p

Â
>

+Ap

L2(Y, B̂)

(
0 Bp

B̂ YBp

)
θ

θ>
(

0

B>p

B̂
>

(YBp)
>

)
−I


< 0,


θSθ

CpX

Ĉ

Cp

0

(CpX)> Ĉ
>

C>p 0

X

I

I

Y


> 0,
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where X,Y,S are positive definite symmetric matrices of size n×n, n×n,m×m, and Â, B̂, Ĉ are

matrices of sizes n× n, n× q, d× n correspondingly. Furthermore,

L1(X, Ĉ) = ApX + XA>p +BpΛIĈ + (BpΛIĈ)>,

and L2(Y, B̂) = A>p Y + YAp + B̂ΛOCp + (B̂ΛOCp)
>.

A feasible solution to the above optimization is a controller of the order of the plant, P. Then, the

system matrices of the controller can be uniquely obtained as follows:

Ck =Ĉ
(
M>

)−1
,

Bk =N−1B̂,

Ak =N−1
(
Â−YApX−NBkΛOCpX−YBpΛICkM

>
)(

M>
)−1

,

where M,N are invertible matrices satisfying NM> = I − YX. One possible choice for N is

NN> = Y−X−1 and M , such that Y N

N> I


 X M

M> ∗

 =

I 0

0 I

 .

Proof. The result follows from Lemma 14 and applying congruence transformation as shown in

Scherer et al. (1997).

A similar result on controller synthesis in the case of a discrete-time system with uncertainty

in feedback communication channels is given in Elia (2005). Furthermore, in Elia (2005), the

author briefly mentions different ways to approach this type of nonconvex problem. One of the

ways to solve the controller synthesis problem is by applying sub-optimal methods, such as the

D-K iteration given in Dullerud and Paganini (2013). In this approach, first θ is fixed to solve for

the controller matrices and then θ is updated by keeping the controller matrices constant. This

process is continued until the update equation for θ converges. In general, this approach does not
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guarantee a global optimal controller, but can always provide a local optimal controller. The D-step

formulation in the D-K iteration is given as follows.

inf
θ

1

subject to

L1(X, Ĉ)

Â+A>p

Â> +Ap

L2(Y, B̂)

 0 Bp

B̂ Y Bp

 θ

θ>

 0

B>p

B̂>

(Y Bp)
>

 −I


< 0,


CpX Cp

Ĉ 0


X I

I Y


−1(CpX)> Ĉ>

C>p 0

 θ

θ> S−1

 < 0.

In the D-step of D-K iteration, only θ is the optimization variable.

We remark that dealing with fixed-order controllers is a difficult problem. The controller matri-

ces can be extracted easily only when the controller is of the size of the plant. Similar formulations

can be seen in Elia (2005) and Scherer et al. (1997).

Designing a static output feedback controller in general even for a deterministic system is a

hard problem hence we expect that designing a mean square stabilizing output feedback controller

will be a difficult problem. However, we agree that this will be an interesting problem to study in

our future research.

In the subsection involving fundamental limitations result on a single input full state feedback

case, we have designed a static state feedback controller. In this case, we applied the standard

result from the robust control theory given in Rotea (1993), where the optimal H2 performance

obtained from static and dynamic controllers are the same for systems with full state feedback.

We have now developed the mean square stability based analysis and controller synthesis results

for continuous-time stochastic linear networked systems. In the next chapters, we apply these results
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to study the impact of renewables on the mean square stability of stochastic power network and

design a wide area controller robust to PMU measurement uncertainty.
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CHAPTER 5. LOAD-SIDE FREQUENCY CONTROL WITH

STOCHASTIC RENEWABLES

In this Chapter, we discuss two control strategies to achieve frequency regulation via load-side

frequency control. The first one is a decentralized load-side frequency control as given in Zhao et al.

(2014b) in the presence of stochastic uncertainty. Further, applying the results developed in Chapter

4, we show the fragility of decentralized load-side frequency controller in a stochastic environment.

Lastly, we present the robust distributive control design algorithm to achieve frequency regulation

robust to stochastic uncertainties.

5.1 Decentralized Control

Recall that, the primal-dual gradient system is the same as the dynamic network model for load-

side frequency control, i.e., Eq. (2.9) except for the fact that the decentralized feedback control

law for the controllable load is obtained as the solution of the optimization problem given in Eqs.

(2.12) - (2.13). This implies that the dynamic power network model is essentially implementing the

primal-dual gradient algorithm, where the feedback control law (2.18) needs to be implemented at

each controllable load for decentralized load-side frequency regulation of power network. In Zhao

et al. (2014b), the authors prove the existence of a unique equilibrium point for primal-dual gradient

system which is globally asymptotically stable. Here, in the presence of a decentralized load-side

frequency controller, we show that this asymptotically stable equilibrium point is very fragile to

multiplicative stochastic uncertainty in the power network. We make following assumption on the

cost function cj corresponding to the controllable loads.

Assumption 20. We assume that the cost function cj is quadratic and hence of the form cj(PCj ) =

PCj
2

2αj
for all j ∈ N . Furthermore, we neglect the saturation constraints on the cost function and
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hence optimal decentralized control law at each controllable load is of the form uj = PCj = αjωj,

which is u = K̂x.

Using the Assumption 20 in the stochastic power network model, Eq. (2.33), we obtain,

ẋ = Âx+ σ
m∑
`=1

B̂`xξ` + σ
m∑
`=1

H`ξ`, (5.1)

where Â := A+BK̂, B̂` := B`
1 +B`

2K̂. The appropriate notion of stability for this system is second

moment stability. Next, consider the system (5.1) without the additive uncertainty.

ẋ = Âx+ σ

m∑
`=1

B̂`xξ`. (5.2)

The covariance propagation equation for the system given in (5.2) and (5.1) is given in Lemma 6.

Let Q(t) and Q̄(t) be the covariance matrices corresponding to systems (5.2) and (5.1). Then, they

satisfy the following matrix differential equations (MDE’s).

Q̇(t) =Q(t)Â> + ÂQ(t) +
m∑
`=1

σ2
` B̂`Q(t)B̂>` , (5.3)

˙̄Q(t) =Q̄(t)Â> + ÂQ̄(t) +
m∑
`=1

σ2
` B̂`Q̄(t)B̂>` +

m∑
`=1

H`H
>
` +

m∑
`=1

σ`H`µ(t)>B̂>` +
m∑
`=1

σ`H`µ(t)H>` .

(5.4)

The following equation shows the mean propagation equation for the system with additive noise

given in (2.33).

µ̇(t) =Âµ(t) (5.5)

The mean square exponential stability of system (5.2) and second moment stability of (5.1) are

related and is given in the following lemma.

Lemma 21. The system (5.2) is mean square exponentially stable if and only if system (5.1) is

second moment bounded.

Proof. Using the operator φ, that transforms a matrix into a vector as defined in Costa et al.

(2006)[Chapter 2], the MDE’s given in Eq. (5.3) and Eq. (5.4) are written as linear differential
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equations as given below.

q̇ = A q, (5.6)

˙̄q = A q̄ + B, (5.7)

where q = φ(Q), q̄ = φ(Q̄),

B =

m∑
`=1

((H` ⊗H`) + ((σ`H`µ
>)⊗ B̂`) + (B̂` ⊗ (σ`µ

>H`)))φ(I) ∈ Rn
2
,

A =Â⊕ Â+

m∑
`=1

σ2
` (B̂` ⊗ B̂`) ∈ Rn

2×n2
,

where I is the identity matrix of size n×n and ⊗ denotes the Kronecker product, ⊕ is the Kronecker

sum.

Necessity : The mean square exponential stability of system (5.2) yields stability of system (5.6),

that is, A is Hurwitz. Since A is Hurwitz, the steady state value of q̄ is given by limt→∞ q̄(t) =

limt→∞ φ(Q̄(t)) = −A −1(
∑m

`=1H` ⊗ H`)φ(I). Now, taking the inverse φ operator, we obtain,

limt→∞E[x(t)x(t)>] = −φ−1(A −1(
∑m

`=1H` ⊗ H`)φ(I)), which is finite. Further, the necessary

condition for A to be Hurwitz is Â being Hurwitz. This implies that the mean propagation system

of (5.1), shown in Eq. (5.5) has a stable evolution. Therefore, system (5.1) is second moment

bounded.

Sufficiency: If system (5.1) is second moment stable, then limt→∞ Q̄(t) is a finite value and the

mean system (5.5) has a stable evolution. Taking the operator, it can be alternately written as,

limt→∞ φ(Q̄(t)) = limt→∞ e
A tφ(Q̄(0))−A −1(1− eA t)

∑m
`=1(H`⊗H`)φ(I) + eA t(

∑m
`=1(σ`H`µ

>)⊗

B̂`)φ(I) + eA t(
∑m

`=1 B̂` ⊗ (σ`µ
>H`))φ(I). The limit on the right-hand side is finite, if and only if

A is Hurwitz. If A is Hurwitz, then the system (5.2) is mean square exponentially stable.

Now, we can analyze the stochastic stability of the power network with decentralized load-side

frequency controller. In particular, we study the mean square exponential stability of system (5.2).

Later, in the next section, we consider the IEEE 68 bus system as a case study example and study

its stochastic stability properties. It can be seen that the decentralized load-side control algorithm

is very fragile in the presence of stochastic renewables. The variance that can be tolerated in the
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voltages of renewable buses is very small, and hence, the decentralized control algorithm is termed

fragile. Detailed discussion on this case study is discussed in subsection 5.3.1.

Next, to counteract the fragility of the decentralized controller, we discuss the design of a robust

distributive control algorithm.

5.2 Robust Control

Here, we consider the stochastic system (2.33) and design a state feedback controller that is

robust to the stochastic uncertainty entering the network because of considerable penetration of

renewables. Again here, we consider the stochastic system without additive noise as follows.

ẋ =Ax+Bu+ σ

m∑
`=1

B`
1xξ` + σ

m∑
`=1

B`
2uξ`. (5.8)

Assume, the static state feedback controller is of the form, u = Kx. Then, similar to Lemma 21,

we can establish the mean square stability of system (5.8) and second moment stability of system

(2.33). However, for the sake of completeness of the analysis, we consider additive uncertainty that

is independent of multiplicative uncertainty.

Then, we have the following closed-loop system by abusing the notation, H.

ẋ = (A+BK)x+ σ

m∑
`=1

(B`
1 +B`

2K)xξ` +Hη (5.9)

where ξ` = d∆`
dt for ` = 1, . . .m with ∆1(t), . . . ,∆m(t) being the standard independent Wiener

processes, H ∈ Rn, η = dζ
dt is a Gaussian process and ζ is a standard Wiener process that is

independent of the process, ∆1(t), . . . ,∆m(t). The necessary and sufficient condition for the closed-

loop stochastic system to be second moment bounded is there exists a Q > 0, such that, it satisfies

(refer Pushpak et al. (2016)[Theorem 11]).

(A+BK)Q+Q(A+BK)> + σ2
m∑
`=1

(B`
1 +B`

2K)Q(B`
1 +B`

2K)> +HH> < 0. (5.10)

A similar controller for the stochastic system is discussed in El Ghaoui (1995). The linear matrix

inequality (LMI) for second moment bounded stability is used to solve for a robust K, such that
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Q > 0 and the variance of uncertainty that can be tolerated by the stochastic system is maximum.

To solve for the controller, rewrite inequality (5.10) as follows:

AQ+QA> +BKQ+QK>B> +HH> + σ2
m∑
`=1

(B`
1Q+B`

2KQ)Q−1(B`
1Q+B`

2KQ)> < 0.

Solving the above LMI for a positive definite Q and K is in general a nonconvex problem. Hence,

we consider the change of variables, M := KQ and by taking Schur complements, we obtain the

following inequality.

AQ+QA> +BM +M>B> +HH> σ(B1
1Q+B1

2M) σ(B2
1Q+B2

2M) . . . σ(Bm
1 Q+Bm

2 M)

σ(B1
1Q+B1

2M)> −Q 0 . . . 0

σ(B2
1Q+B2

2M)> 0 −Q . . . 0

...
...

...
. . .

...

σ(Bm
1 Q+Bm

2 M)> 0 0 . . . −Q


< 0.

(5.11)

The LMI shown in Eq. (5.11) is satisfied by multiple Q > 0. To get a meaningful solution to this

LMI, rather than looking at this problem as a stability problem, we look at the H2 performance

criterion of system. In doing so, we rewrite the closed-loop stochastic system (5.9) in the robust

control form. The deterministic part of the closed-loop system with additive uncertainty is denoted

by G and is shown below.

G :

 ẋ = Ax+ Bw +Hη

z = Cx
(5.12)

where A = A + BK, C = 1n ⊗ In, 1 is a column vector of size n with all entries as 1, In is an

identity matrix of size n,

B =

[
B1

1 +B1
2K B2

1 +B2
2K . . . Bm

1 +Bm
2 K

]
.

The variables w, z are the disturbance and control signals and they are related by

w = ξz, (5.13)

where ξ = diag(ξ1In, . . . , ξmIn). Note that, the feedback interconnection of Eqs. (5.12) and (5.13)

gives the closed-loop stochastic system (5.9). The feedback interconnection of Eqs. (5.12) and
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(5.13) is a multi-input multi-output (MIMO) system with number of uncertainties deciding the size

of MIMO system.

The H2 norm for the system (5.12) can be interpreted as the output variance for white noise

applied at the input (refer Dullerud and Paganini (2013) for more explanation). Therefore, the H2

norm of the system G is tr(Q), where Q is the steady-state variance of x.

Now, we have the following optimization problem that gives a robust controller K while mini-

mizing the steady state variance of states, i.e., minimizing the H2 norm of the system.

minQ>0,M tr(Q)

subject to LMI (5.11).

(5.14)

LMI (5.11) is still nonconvex in terms of M,K and σ. The robust controller, K is obtained by

following the algorithm given below.

Robust state-feedback controller, K

1: Choose a range for σ > 0.

2: for i = 1, 2, . . .

3: Fix σ := σ(i)

Solve (5.14) for M and Q

if problem is feasible

The controller, K = MQ−1.

else

The robust controller, K is the one obtained from the previous iteration.

end if

4: end for.

5.3 Case Study: IEEE 68 Bus System

In this section, we consider the IEEE 68 bus network to analyze the decentralized and robust

load-side primary frequency control strategies with stochastic load voltages. IEEE 68 bus New

England/New York interconnection test system consists of 16 generator buses and 52 load buses.
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The single-line diagram of the 68 bus test system is shown in Figure. 5.1. This system contains

induction motor loads, constant power loads, and controllable loads. The relevant data for this

system is obtained from the data files of power system toolbox (refer Chow and Cheung (1992)).

Figure 5.1 Single-line diagram of IEEE 68 bus system

As discussed in Section 2.3, we include the renewables in the power network, and the uncertain,

intermittent nature of renewables is modeled into the power network by considering the voltages to

be stochastic. Changing the controllable loads involves a cost measured in the form of aggregate

dis-utility of loads, and it has to be minimized.

In this 68 bus system, there are 29 induction motor loads which are sensitive to frequency, 35

controllable loads and the remaining loads are uncontrollable frequency insensitive loads. Now,

we replace few of the classical generators with renewable energy sources such as either solar or

wind power. As there are no heavy moving parts at these renewables, the inertia values at these

buses are relatively smaller, when compared to the classical generators (refer Gautam et al. (2009)).
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Further, integration of renewables into the power network increases the damping slightly as shown

in Slootweg and Kling (2003b). Therefore, we assume a relatively smaller value for inertia at

renewables location and relatively bigger value for damping at those locations. For the simulation

purpose, we assume the renewable energy source at buses 54, 55, 56, 60, 63, 64 and 65 replacing the

generator buses. Now, the buses connecting the renewable buses are 6, 10, 19, 25, 32, 36 and 52 and

hence, s = 7.

In the given data, the inertia values at generator buses lie between 1− 5, whereas, at the buses

with renewable energy, we have considered it as 0.5. Similarly, the damping values at generator

buses are in the range of 0−5, and we consider the damping at renewable energy buses to be 6. The

simulations results discussed below are consistent for the range of inertia values between 0.5 − 1

and damping values between 5− 6.

Now, we first discuss the fragility of the decentralized frequency control on the power network

in the presence of renewables.

5.3.1 Decentralized Control

We now analyze the effect of cost on controllable loads on the load-side primary frequency

control with stochastic renewables. If the cost of controllable loads is high, then it is difficult to

vary the controllable loads. Using the analytical framework discussed in section 4.3, we identify

the critical variance that can be tolerated in the voltages while maintaining the mean square

exponential stability of power network with a decentralized controller. The critical variance value,

σ2
∗, is observed to be very small in the order of 10−3 with the maximum variance value of 1.9×10−3

which is obtained when the cost coefficient on the controllable load is equal to α = 0.5 (Refer to

Assumption 20). In Figure. 5.2, observe that, if the cost of controllable loads is further increased,

the critical variance that can be tolerated by the stochastic power network reduces. It is important

to notice that, for most of the cost values on controllable loads, the critical variance is very small.

In generating Figure. 5.2, all the damping values at generator and load buses are kept constant.
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Observe that, if the variance that can be tolerated by the system is small, then the system is

on the verge of stability. This nature of the system can be seen, when we consider the stochastic

voltages with a variance, σ2 > σ2
∗, the frequencies grow out of bounds, and the power network

becomes mean square unstable. This phenomenon is seen in Figs. 5.3 and 5.4. The stochastic

voltage variation with respect to time is shown in Figure. 5.3.
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Figure 5.2 Impact of increase in cost on the critical variance

In Figure. 5.3, for the chosen σ2 > σ2
∗, it is important to emphasize that although the voltages

values lie within the safe operating limits of 0.95 pu to 1.05 pu, the frequencies violate the operating

limits as seen in Figure. 5.4. This shows the fragility of the decentralized controller in the presence

of renewables, as it is inadequate to regulate the frequency by means of controllable loads.

Consider a step change in the power network. For this step change in power, the decentralized

frequency controller is ineffective in controlling the controllable loads to regulate the frequency.

In Figure. 5.5, initially the system was in stable operating condition with frequencies with in the

operating limits. We created a step change in power after 10 seconds, and then the frequencies
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Figure 5.3 Voltage fluctuation at generator bus 56

oscillate and go out of the operating range and continue to oscillate. This phenomenon is not

desirable, as it has the impact to damage the power system equipment.

Hence, to counteract the fragility of this decentralized controller, a modified robust distribu-

tive controller must be designed to regulate the frequency that can tolerate uncertainty in the

renewables.

The higher penetration of renewables in the power network will make the decentralized frequency

control algorithm more fragile. In particular, with the increase in the number of renewable energy

resources, more bus voltages will become uncertain, and this has an adverse impact on the frequency

regulation. Figure. 5.6 shows the impact of increasing the penetration of renewables in the power

network. We notice, with the increase in penetration (i.e., with increase in the value of m) the

critical variance that can be tolerated by the system decreases. Note that, this figure will change

based upon which locations in the network are chosen for renewables. However, the trend of a

decrease in the value of critical variance with the increase in the number of renewables will continue

to hold true.
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Figure 5.4 Mean square unstable behavior for frequencies at all generator buses.
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Figure 5.5 Frequency at generator bus 53 following a step change in power.
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Figure 5.6 Critical variance with increase in number of renewables
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CHAPTER 6. STOCHASTIC SMALL SIGNAL STABILITY OF POWER

NETWORK WITH UNCERTAIN WIND

6.1 Simulation Study

We illustrate the proposed framework on an IEEE 39 bus system in this section. IEEE 39

bus system given in Information Trust Institute (2018); Chow and Rogers (2000) consists of 10

synchronous generators and for the purpose of our study, the SGs are replaced with DFIGs one by

one. The system data for the simulation is obtained from Chow and Rogers (2000).

The DA description of the power network is elucidated in Chapter 2 and in particular in Section

2.1.5. The wind speeds to the DFIG are modeled stochastically to capture the intermittent nature

of the wind as shown in Section 2.1.4. Cube of the wind speeds is modeled with a stochastic process

rather than actual wind speed as discussed in Section 2.1.4. Finally, we arrive at the nonlinear

stochastic DA equations as described in (2.4). These stochastic nonlinear DAEs are linearized

around an operating point to obtain a linear stochastic DAE. The operating point at which the

system is linearized can be obtained as described here. The network algebraic states are obtained

from the power flow solution. The dynamic and algebraic states at SGs and DFIG are found from

the steady-state solution of the reduced DA system. The implicit ode solver, ode15i in Matlab is

used to solve the DA equations. Following this, we obtain the system matrices given in Eqs. (2.5)

and (2.6). The system is then Kron reduced by expressing the algebraic states in terms of the

dynamic states to obtain a stochastic ODE as shown in Eq. (2.7). The stochastic system is given

in Eq. (2.7) where the wind speed uncertainty appears parametrically in the system matrix can

now be expressed as a network system with stochastic uncertainty and control in the feedback as

shown in Eq. (4.13) and Fig. 6.1.
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Figure 6.1 Dynamical system in (4.13) represented as the feedback interconnection of GGG

with controller, K and ΣΣΣ.
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Figure 6.2 Critical variance that can be tolerated in wind speeds while maintaining the

stochastic small signal stability with respect to the two load-side primary fre-

quency control strategies.

6.1.1 Performance of Load-Side Primary Frequency Controller

The objective here is to study the performance of the load-side based frequency controllers in

the presence of wind uncertainty. In so doing, we utilize the decentralized control and control with

neighborhood communication from Section 2.4 and apply the Remark 16 to identify the critical

variance that can be tolerated in the wind speed while maintaining the mean square exponential

stability of the power network which essentially is the stochastic small signal stability of the power

network. Buses 30 − 39 contains the conventional SGs and one of the buses is replaced with

a DFIG for the purpose of the simulation study. The process is repeated by replacing each of

the SG with DFIG and the critical variance that the system can tolerate with wind uncertainty

at that location is computed analytically using the decentralized control as well as control with

neighborhood communication.

The control gains for the different controller strategies are chosen in such a way that, maximum

20% of the load is controllable at each load bus and they provide the frequency regulation in

the range of 59.9-60.1 Hz. Utilizing these controller strategies, the critical variance that can be

tolerated in the wind speeds while maintaining stochastic small signal stability are computed and
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Figure 6.3 Increase in the penetration of renewables resulting in a reduced critical variance
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Figure 6.4 Actual wind speed data recorded near Ames, Iowa at different times/days (refer

Takle et al. (2018)).



www.manaraa.com

87

can be shown in Fig. 6.2. It can be observed that the control with neighborhood communication

seems to be robust to wind uncertainties relative to decentralized load-side primary frequency

control. Hereafter, we refer only to the control with neighborhood communication in the rest of

the paper.

The effect of critical variance (σ2
∗) of the wind speeds thus obtained can be seen from the time-

domain simulations of the power network. The nominal wind speed for the simulation study is

chosen to be 8 ms−1 and when the uncertainty of the wind speeds is increased from a value smaller

than critical variance to a value larger than the critical variance, the system transitions from mean

square exponential stability to mean square instability. Figures 6.5 and 6.6 show the effect on

frequency at the DFIG bus and the SG bus with increase in the critical standard deviation.

By modeling the wind speeds as a Wiener process, we study the impact of an increase in the

number of DFIGs. In doing so, we make the assumption that when there is more than one DFIG

in the network, then the variance of wind speeds at every DFIG is assumed to be the same. This

assumption helps in understanding the overall effect of the stochastic wind speeds on the power

network. Again, applying the Remark 16, the critical variance that can be tolerated by the power

network while maintaining the stochastic small signal stability can be identified. It can be seen

from Fig. 6.3 that increasing the number of wind turbine generators (DFIGs) in the power network

leads to a reduction in the critical variance that the system can tolerate.

We next present stochastic small signal stability studies on the IEEE 39 bus system with

statistics from the actual wind speed data collected from a wind tower located near Ames, Iowa.

The actual wind speed data is available at a granularity of 1 sec and can be downloaded from Takle

et al. (2018). By using the actual wind speeds and statistics from the actual wind speeds, we intend

to study the maximum penetration of the renewables in the power network while maintaining the

stochastic small signal stability.

The wind speed data from Takle et al. (2018) is considered for 15 min with 1 second granularity.

These wind speeds are further interpolated to 1 millisecond for the purpose of using these wind

speeds in the time-domain simulations. All the SGs can be replaced by DFIGs and to study such a
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Figure 6.5 Frequencies at buses 37 (SG bus) and 38 (DFIG bus). The plots are derived

with σ = 0.4σ∗ (stable scenario).
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Figure 6.6 Frequencies at buses 37 (SG bus) and 38 (DFIG bus). The plots are derived

with σ = 2.2σ∗ (unstable scenario).
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system, ideally, we need 10 sets of wind speed data corresponding to 10 different locations. However,

due to lack of unavailability of actual wind speed data at 1 second fineness, we consider the wind

speed data at different time/day monitored at the wind tower near Ames as input to different

DFIGs. Actual wind speed data corresponding to different time/day monitored at the tower near

Ames, Iowa can be seen in Fig. 6.4.

6.1.2 Maximum Allowable Wind Generation

We now identify the maximum penetration of renewable wind energy by modeling the wind

speeds as a stochastic process (with statistics from the actual wind speed data) in the presence of

control with neighborhood communication.

6.1.2.1 Wind Speed Modeled as Wiener Process

Consider the wind speeds at each DFIG as a Wiener process whose variance is multiplied with

the variance of the actual wind speed corresponding to the time-series data of the wind speeds as

shown in 6.4. This process is repeated by increasing the penetration of wind generation and every

time a DFIG is added, using the time-domain simulations, frequencies at each of the buses are

monitored. It can be seen that, when the number of DFIGs are increased from 8 to 9, the power

network turns to mean square unstable. In other words, the frequencies go out of tolerable bounds

in similar as shown in Fig. 6.8 in the presence of control with neighborhood communication. Figure

6.7 shows the frequencies for 8 DFIGs. In particular, we identified the maximum penetration of

wind generation which is 80% as there are a total of 10 generating sources and 8 can be replaced

with DFIGs of equivalent capacity without loosing stochastic small signal stability.

We complement the above result with time-domain simulations of the reduced ode Eq. (2.8)

where the stochastic wind speeds are now substituted with the actual wind speeds.
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Figure 6.7 The wind speeds are modeled as a Wiener process. The plots are shown here

for the case with utmost renewables (2 SGs and 8 DFIGs) while maintaining

stochastic small signal stability.
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Figure 6.8 The wind speeds are modeled as a Wiener process. The plots are shown here

for the case when the system turned mean square unstable with 1 SG and 9

DFIGs.
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6.1.2.2 Linearized System with Real Wind Data

The small signal stability with linearized power system dynamics is studied using the actual

wind speeds with power system time-domain simulations. In the case of linearized power system

dynamics, it is seen that only 70% of penetration is allowed while maintaining the small signal

stability. Figures 6.9 and 6.10 show the average frequencies of SGs and DFIGs when number of

DFIGs are increased from 7 to 8.
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Figure 6.9 Linearized system simulations with real wind speed data. The plots are shown

here for the utmost renewable energy sources (3 SGs and 7 DFIGs) while main-

taining stochastic small signal stability.

We next intend to observe a similar phenomenon with nonlinear power system dynamics.

6.1.2.3 Nonlinear DAE System with Real Wind data

Nonlinear time-domain simulations of the system given in Eq. (2.4) are performed by considering

actual wind rather than stochastic wind. Here, it is observed that when the number of DFIGs are

increased from 5 to 6, the system turns unstable. The average frequencies of the SGs and DFIGs

with 5 and 6 DFIGs can be seen in Figs. 6.11 and 6.12. Therefore, in this case, only 50% of wind

generation is possible.
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Figure 6.10 Linearized system simulations with real wind speed data. The plots are shown

here when the system turned mean square unstable with 2 SGs and 8 DFIGs.

Note that, these results depend on the input wind speed data. In this work, we have considered

the wind speed data with high variability (refer Fig. 6.4) and the results may vary if wind speeds

are considered with low variability.
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Figure 6.11 Nonlinear DAE simulations with real wind speed data. The plots are shown

here with utmost renewable energy sources (5 SGs and 5 DFIGs) without any

frequency violations.
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Figure 6.12 Nonlinear DAE simulations with real wind speed data. The plots are shown

here when the average frequencies are violated with 4 SGs and 6 DFIGs.
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CHAPTER 7. WIDE AREA CONTROL IN THE PRESENCE OF PMU

MEASUREMENT UNCERTAINTY

We have described the problem of wide area control with communication channel uncertainty

in subsection 3 of Chapter 2. The system (3.7) can be represented in the closed-loop form as shown

in Eq. (4.2) and then, we invoke Lemma 7 to study the mean square stability analysis of Eq.

(3.7). The mean square stability results and controller synthesis formulation for system (3.7) are

developed in Sections 4.3 and 4.10 of Chapter 4. We now consider an IEEE 39 bus system and study

the problem of damping of inter-area oscillations in the presence of uncertain PMU measurements

and uncertain control inputs by applying the results developed in Chapter 4.

7.1 Case Study: IEEE 39 bus system

Consider the IEEE 39 bus system as shown in Figure. 7.1 which consists of 10 generators and

29 load buses. For the sake of simulation study, generator at bus 39 is considered as a reference bus.

The power network model is obtained as discussed in Section 3.1 and includes the PSS controller

(local) and SVC, a FACTS device. The PSS at each generator is designed using following parameter

values from Jabr et al. (2010), kpss = 12, Tn = 0.1, Td = 0.01, Tw = 3 (please refer to Eq. (3.1) for

parameter definitions).

7.1.1 Coherent Groups of Generators

The coherent groups of generators in the power network can be identified by eigen value analysis

of linear power network model described in Eq. (3.2). The corresponding eigen vector plots are

shown as polar plots in Figure. 7.2. There are 4 dominant inter-area modes and their oscillation

frequency and damping coefficients corresponding to each mode are given in Table 7.1. A wide
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Figure 7.1 Single-line diagram of IEEE 39 bus system
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area controller designed with the help of PMU measurements can induce additional damping in the

power network and can damp the inter-area oscillations.

Table 7.1 Dominant inter-area modes

Eigen value Coherent group Frequency (Hz) Damping

−0.3192± 4.9181i 2,5 vs 1,3,4,6-9 0.7844 0.0648

−0.4096± 3.9581i 6 vs 1-5,7-9 0.6333 0.1029

−0.3153± 3.0503i 2-5 vs 1,6-9 0.4881 0.1028

−0.2395± 2.5276i 8 vs 1-7,9 0.4041 0.0943
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Figure 7.2 Inter area modes in NE 39 bus network
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7.1.2 Critical PMU Measurements and Wide Area Control Inputs

Following the modeling of power network given in subsection 3.3, the PMU measurements

and the wide area control inputs are modeled as stochastic uncertainty. Further, we make the

assumption that the variance of uncertainty in all channels is the same and is equal to σ2.

Now, applying the results from Section 4.3, we can find the critical measurements, critical

control inputs and finally, we can compare their criticality based on identifying the critical variance

that can be tolerated by stochastic uncertainty in each channel. We assume PMUs measure the

angular velocity ω of generators and these measurements, wide area control inputs are modeled

with stochastic uncertainty as shown in subsection 3.3.

To identify their criticality, we consider stochastic uncertainty in each measurement and each

control input at a time and the critical variance, σ2
∗ corresponding to each channel is computed.

The channel is termed most critical if it can tolerate least σ2
∗. Table 7.2 shows the normalized value

of critical variance, σ2
∗ each PMU can tolerate. We notice that the PMU measurement at generator

32 is most critical. Similar simulations for the wide area control inputs yields, the control inputs

to generator 31, 34 and 37 are the most critical. Figure 7.3 show the location of critical PMUs and

critical wide area control inputs on a single-line diagram of IEEE 39 bus. Further, Table 7.3 shows

the normalized value of critical variance for control inputs to the generators.

Table 7.2 Critical variance tolerated by each PMU

PMU 30 31 32 33 34 35 36 37 38 39

Critical variance 0.1 0.04 0.01 0.14 0.04 0.07 0.05 0.18 0.08 1

Table 7.3 Critical variance tolerated by each control input

Control input 30 31 32 33 34 35 36 37 38 39

Critical variance 0.01 9× 10−4 0.02 0.01 7× 10−4 0.14 0.28 8× 10−4 0.006 1
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• Critical	wide	area	control	inputs	and	PMU	measurements	in	a	IEEE	39	bus	system

Figure 7.3 Critical PMU and wide area control input locations

7.1.3 Robust Wide Area Control

The PMU measurements from the power network and wide area control inputs to the power

network are considered with stochastic uncertainty as it can model a malicious data attack or

inherent communication channel noise. We model this uncertainty in input and output channels

as a Gaussian distribution. The challenging part of the analysis is that the noise enters the system

dynamics multiplicatively as well as additively. A dynamic controller of the size of the system

is designed based on LMI-based optimization as shown in Theorem 19 such that the closed loop

system is second moment bounded. The LMI-based optimization problem is solved in Matlab

using Mosek solver and YALMIP (refer Löfberg (2004)). The outputs were chosen to be ω states of

generators from PMU measurements. This dynamic controller is the wide area control that induces

additional damping in the network to counteract the inter-area oscillations.

Furthermore, using the mean square stability results from Section 4.3, the critical variance is

identified to be σ2
∗ = 2.37. Any value of σ2 above the critical variance, σ2

∗, the system is mean

square unstable. Figures 7.4(a) and 7.4(b), show the time domain simulation results with PSS and
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Figure 7.4 Time variation of generator angular velocities with different choice of uncer-

tainties.

wide area controller for value of σ2 < σ2
∗ and σ2 > σ2

∗ respectively. From Figure. 7.4(b), we notice

that the time domain trajectories grow unbounded for value of σ2 > σ2
∗. In all these time-domain

simulations, an additive noise of variance, 8× 10−4 is added to amplify the effect of multiplicative

noise on system dynamics. Further, these time-domain simulations are run over 25 realizations to

obtain consistent results.

The LMI-based wide area controller designed here provides robustness to the uncertainty in

measurements and control inputs. To verify the robustness of the proposed framework, we also

design a non-robust controller based on the observer and compare the critical variance with respect

to both the controllers. Figures 7.5(a) & 7.5(b) show the trace of steady state covariance against

standard deviation for both the cases. The red dotted line in the plots corresponds to the critical

standard deviation, σ∗. The value of σ∗ for the robust controller is 1.5424 and for the non-robust

controller, it is 1.2517. It is assumed that the variance in all channels is the same.
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CHAPTER 8. CONCLUSION

8.1 Concluding Remarks

We have developed the stochastic power network model where the stochastic uncertainty arises

due to the presence of intermittent and unreliable wind energy and communication channel uncer-

tainties. Specifically, we have shown that, when the wind speed is uncertain, the resultant power

network dynamics is stochastic and the stochastic uncertainty appears multiplicative in the system

dynamics. We have also modeled the power network with uncertainty in PMU measurements to

the control center and wide area control inputs to the power network. The challenging part of the

stochastic stability analysis of the power network is that the uncertainty appears multiplicative as

well as additive in the system dynamics. We have expressed the stochastic power network dynamics

as a networked control system with uncertainty and then developed the mean square exponential

stability analysis of such systems.

The developed framework is more general and can be applied to analyze the stability of any

stochastic continuous-time linear stochastic networked systems. In particular, we developed the

necessary and sufficient conditions for the mean square exponential stability that can also be ex-

pressed as a spectral radius condition. These results generalize the deterministic continuous-time

small-gain theorem results to continuous-time stochastic systems. Further, these mean square ex-

ponential stability result can be equivalently represented as an LMI-based optimization problem

minimizing the mean square norm of the stochastic system. This LMI-based optimization problem

is leveraged to synthesize a robust controller of the size of the system. Further, we presented a

fundamental limitation result which relates the unstable eigenvalues of the system with the critical

variance that can be tolerated in the input channel for the special class of systems with single input

full state feedback.
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The system theoretic framework developed in this work is then applied to study the mean square

exponential stability of stochastic power network where the stochastic uncertainty arises due to the

presence of renewables or communication channel uncertainties. An IEEE 68 bus system is chosen

as a test case to show the fragility of the decentralized load-side frequency controller in the presence

of uncertain wind. We observe that the value of critical variance that can be tolerated in the bus

voltages is very small and hence, the decentralized controller is very fragile. Also, we notice that

with an increase in the cost of controllable loads and with the increase in penetration of wind farms,

the critical variance value decreases. Finally, we propose a frequency controller that is robust to

stochastic bus voltages.

Furthermore, we consider a detailed higher order nonlinear DAE model for the power network

with stochastic renewables and apply the proposed framework of mean square exponential stability

to study the stochastic small signal stability of the power network. The controllable loads are mod-

eled into the power network to provide frequency regulation services in the presence of intermittent

and unreliable wind. It is seen that the load-side primary frequency control based on the control

with neighborhood communication outperforms the decentralized one. Furthermore, we studied

the maximum allowable penetration of wind generation in an IEEE 39 bus system using the actual

wind speed data. In particular, we show the stochastic small-signal stability of IEEE 39 bus system

with maximum allowable penetration of renewables using the statistics of actual wind and validate

them through linear and nonlinear time-domain simulations. Future work involves applying the

proposed robust control strategy for load-side frequency controller which gives more robustness to

uncertainty in comparison to control with neighborhood communication.

Finally, we considered the problem of damping the inter-area oscillations in the presence of

noisy measurements from PMUs. Each generator in the power network is modeled with a third

order model and power system stabilizer is used as a local control. An LMI-based optimization

formulation is proposed to design a stabilizing wide-area controller robust to the noisy PMU mea-

surements. The proposed framework is applied to identify the critical variance that can be tolerated

in PMU measurement while maintaining the mean square exponential stability of the network. The
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developed framework is applied to analyze the IEEE 39 bus power network. The critical variance

the system can tolerate with uncertain PMU measurements is computed based on the proposed

analytical framework. Finally, we identified the critical PMU measurements and wide area control

inputs in an IEEE 39 bus system.
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NOTATIONS

Notations used in Chapter 2

The notations used in modeling the power network with uncertain wind speeds described in

Chapter 2 are given here. The index i corresponds to either a SG or a DFIG.

E′qi , E
′
di

- quadrature and direct-axis transient internal voltage at SG i

δi, ωi - phase angle and angular velocity of the SG i

Efdi - field voltage of SG i

Rfi - rate feedback state of the voltage regulator at SG i

VRi - voltage regulator state at SG i

Pmi - turbine/governor state at SG i

Iqi , Idi - quadrature and direct-axis currents induced in the stator of SG i

Tmi - mechanical input applied to the shaft at SG i

ωs - rated synchronous speed of SG

Hi - inertia constant of SG i

T ′d0i
, T ′q0i - quadrature and direct-axis transient time constant of SG i

Xdi , X
′
di

- direct-axis salient and transient reactance of SG i

TGi - time-constant of the speed governor without droop

KAi - voltage regulator gain of the IEEE type-1 exciter

TAi - voltage regulator time constant of the IEEE type-1 exciter

KEi - IEEE type-1 exciter gain

TEi - time constant of the IEEE type-1 exciter

TFi - feedback time-constant of the IEEE type-1 exciter

KFi - IEEE type-1 exciter feedback gain
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Vi, θi - voltage magnitude and angle at bus i

ωri - angular velocity of DFIG i

z1i , z2i - state variables related to the speed controller at DFIG i

z3i , z4i - state variables related to the reactive power controller at DFIG i

Vqri , Vdri - quadrature- and direct- axis voltage induced in the rotor of DFIG i

Iqri , Idri - quadrature- and direct-axis current induced in the rotor of DFIG i

Iqsi , Idsi - quadrature- and direct-axis current induced in the stator of DFIG i

Pgeni
- total real power generated by DFIG i

Qgeni
- total reactive power generated by DFIG i

Vref i - reference voltage at DFIG i

vwind - velocity of the wind speed at DFIG i

si - slip of a DFIG i

KP1,KI1 - proportional and integral gains of the speed controller’s slow loop

KP2,KI2 - proportional and integral gains of the speed controller’s fast loop

KP3,KI3 - proportional and integral gains of the reactive power controller’s slow loop

KP4,KI4 - proportional and integral gains of the reactive power controller’s fast loop

Rsi - stator internal resistance

Xqi - quadrature-axis salient reactance
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Notations used in Chapter 3

The following notations are used in describing the power network with communication

uncertainty as shown in Section 3.1.

δi - generator phase angle

ωi - angular velocity of the rotor

Eqi - quadrature-axis induced emf

Efdi - emf of fast acting exciter connected to the generator

Idi - direct-axis currents induced in the generator

Iqi - quadrature-axis currents induced in the generator

Vi - voltage magnitude at bus i

θi - voltage angle at bus i

Tmi - mechanical input applied to the generator shaft

Vref i - reference voltage at bus i

ωs - rated synchronous speed

Mi - inertia of the generator

Rsi - stator internal resistance

Xqi - quadrature-axis salient reactance

Xdi - direct-axis salient reactance

X ′di - direct-axis transient reactance

KAi - exciter gain

TAi - time constant of the exciter
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